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In the realm of decision making, researchers have sometimes 
regarded cognitive heuristics as poor replicas of statistical pro-
cedures that are often too complicated for the uneducated 
mind to compute (Kahneman & Tversky, 1996). However, 
other researchers have emphasized that cognitive heuristics 
represent adaptive strategies that are ecologically rational 
(Gigerenzer, 1996; Gigerenzer & Gaissmaier, 2011; Gigeren-
zer & Goldstein, 2011; Goldstein & Gigerenzer, 2002). 
According to this latter view, it is assumed that cognitive heu-
ristics evolved in tandem with basic psychological mecha-
nisms. One well-known heuristic, namely the recognition 
heuristic, exploits the vast and reliable capacity of the human 
brain for recognition. According to this heuristic, whenever 
two objects have to be ranked by a specific criterion and only 
one object is recognized, then the recognized object is ranked 
higher than the unrecognized object.

In environments in which recognition is positively correlated 
with the decision criterion, inferences on the basis of mere rec-
ognition will lead to good results with the least amount of effort 
and time. A famous example illustrating how the recognition 
heuristic works is the city-size comparison task. Participants 
have to decide which of two cities has more inhabitants. 

Intriguingly, most participants indeed decide as if they adhere to 
the recognition heuristic: When a known and an unknown city 
name are presented, participants choose the known city, as veri-
fied by questionnaires employed before or after the experiment, 
in approximately 90% of the cases (Goldstein & Gigerenzer, 
2002). The recognition heuristic leads to performance highly 
above chance (i.e., it is ecologically rational), because city size 
and recognition are mediated via the number of times a city has 
been mentioned in the news. Thus, the larger a city, the more 
often it is cited in the news, and the better it is recognized (Fig. 
1). The recognition heuristic also functions well in other 
domains, such as predicting the outcome of tennis matches or 
the success of stock trades (Borges, Goldstein, Ortmann, & 
Gigerenzer, 1999; Serwe & Frings, 2006).

One argument against the recognition heuristic is that it can 
be inferred only indirectly from postexperiment questionnaires, 
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Abstract

Humans can make fast and highly efficient decisions by using simple heuristics that are assumed to exploit basic cognitive 
functions. In the study reported here, we used event-related potentials (ERPs) to disclose the psychological mechanisms 
underlying one of the most frugal decision rules, namely, the recognition heuristic. According to this heuristic, whenever two 
objects have to be ranked by a specific criterion and only one object is recognized, the recognized object is ranked higher than 
the unrecognized object. Using a standard recognition-heuristic paradigm, we predicted participants’ decisions by analyzing 
an ERP correlate of familiarity-based recognition occurring 300 to 450 ms after stimulus onset.  The measure remained a 
significant predictor even when later ERP correlates were taken into account. These findings are evidence for the thesis that 
simple heuristics exploit basic cognitive processes. Specifically, the findings show that familiarity—that is, recognition in the 
absence of recollection—contributes to decisions made on the basis of such heuristics.
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so that the possibility cannot be excluded that participants used 
criterion-related knowledge or other sources of knowledge 
instead of mere recognition. In a study that is so far unique, Volz 
et al. (2006) investigated the neural correlates of the recognition 
heuristic with event-related functional MRI (fMRI). Volz and 
her colleagues revealed increased activation within the anterior 
frontomedian cortex, precuneus, and retrosplenial cortex when 
participants followed the recognition heuristic, as compared 
with when they did not follow the heuristic. Nevertheless, the 
study did not provide any information about what kind of recog-
nition processes participants might have used to make their 
decision. In the study reported here, we took a new approach to 
investigating the recognition heuristic by employing psycho-
physiological methods. By measuring recognition-related brain 
electrical activity, we predicted participants’ decisions on-line 
even before they actually made those decisions.

In the dual-process perspective of recognition memory, a 
distinction is made between an initial sense of knowing (famil-
iarity), which is fast and context free, and a second, slower, 
and more effortful process (recollection), by which contextual 
details of a prior episode can be retrieved (Eichenbaum, Yone-
linas, & Ranganath, 2007; Yonelinas, 2002). These two mem-
ory processes have been extensively studied in behavioral 
experiments (Yonelinas, 2002), as well as with brain imaging 
(Yonelinas, Otten, Shaw, & Rugg, 2005) and electrophysio-
logical methods (and, particularly in the latter case, by the 
analysis of event-related potentials, or ERPs; Rugg & Curran, 
2007). Because of the millisecond time-resolution of ERPs, 
familiarity-based recognition and recollection-based recogni-
tion can be temporally differentiated. Furthermore, the two 
recognition processes are associated with different ERP scalp 
topographies. Familiar stimuli elicit more positive-going ERP 
waveforms than do unfamiliar stimuli at fronto-central record-
ings sites between 300 to 500 ms after stimulus presentation, 

whereas recollection is associated with a parietal maximal 
ERP modulation having an onset of around 450 ms after stim-
ulus presentation (Jäger, Mecklinger, & Kipp, 2006). In sup-
port of the view that familiarity reflects a continuous index of 
memory strength, the midfrontal old/new effect (the difference 
between ERPs in response to studied and unstudied items) was 
found to covary with the level of familiarity, as indexed by 
response confidence during recognition judgments (Woodruff, 
Hayama, & Rugg, 2006).

The characteristics of familiarity-based memory make it an 
ideal mechanism for exploitation by the recognition heuristic: 
Familiarity typically arises early after stimulus onset, thereby 
preventing extensive comparisons or evaluations using other 
knowledge sources. Also, in the case of the city-size compari-
son task, as familiarity reflects a continuous index of memory 
strength and because city size is highly correlated with the 
number of prior encounters in the media, familiarity should 
also be highly diagnostic even for an inaccessible criterion, 
such as city size.

In the current study, we linked neurocognitive research 
with the field of decision making. We reasoned that the bene-
fits of this linkage would be twofold. First, a well-known heu-
ristic would be associated with a basic memory process and its 
widely accepted neural correlate (Rugg & Curran, 2007). Sec-
ond, familiarity could be measured directly and on-line, inde-
pendently of postexperiment questionnaires. This approach 
opens in turn the intriguing possibility of predicting behav-
ioral decisions by means of electroencephalography (EEG) 
data: If the recognition heuristic exploits familiarity when two 
objects are compared, then the object that elicits the larger 
ERP correlate of familiarity should be chosen. Thus, the ERP 
data would predict the subject’s decision even before the deci-
sion was made. To investigate this intriguing possibility, we 
recorded EEG data while subjects performed a city-size com-
parison task.

Method
Participants

Twenty-one volunteers (12 female, 9 male), ranging in age 
from 21 to 31 years (mean age = 24.9 years), took part in the 
experiment. Data from 1 subject had to be excluded from the 
analysis because of technical artifacts. All participants were 
students at Saarland University. Participants were informed 
about the procedure of the experiment and gave their written 
consent for taking part in it.

Materials
We used the names of 60 well-known and 60 little-known cit-
ies in France, Italy, Spain, and Great Britain. The average rec-
ognition rates of these cities were known from a previous 
study (Pachur, Bröder, & Marewski, 2008). In our experiment, 
each well-known city had at least an average recognition rate 
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Fig. 1.  Schematic illustrating the operation of the recognition heuristic in 
the city-size comparison task (adapted from Goldstein & Gigerenzer, 2002). 
The unknown criterion, city size, is correlated with a mediator variable, 
frequency of citations in the news, such that the larger a city, the more 
often it is mentioned in the news. This increased publicity in turn leads to 
increased recognition of a city name. Consequently, favoring a recognized city 
name over an unrecognized city name leads to highly above-chance correct 
identification of the larger of two cities in the task.
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of 80% or higher, whereas each little-known city had an aver-
age recognition rate not exceeding 15%.

Procedure
Participants performed a city-size comparison task while EEG 
data were recorded. A sample trial sequence is illustrated in 
Figure 2a. In each trial, participants saw four screens. On the 
first screen, they were asked to concentrate. The next screen 
presented a city name, and the following screen presented a 

different city name. The final screen prompted participants to 
decide which of the two cities had more inhabitants. Partici-
pants indicated their decision by pressing a button (no time 
limit), and they did not receive feedback. In each trial, a well-
known and a little-known city were randomly chosen to opti-
mize the use of the recognition heuristic. Cities were paired 
such that the average probability that the well-known city had 
more inhabitants than the little-known city was 83.8%, and the 
average probability that the little-known city had more inhab-
itants than the well-known city was 16.2%. Stimuli were 
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Fig. 2.  Sample sequence (a) and analysis (b) of a single trial. Each trial began with a 1,000-ms interval in which participants were asked to 
concentrate. Next, participants saw two consecutively presented city names (one well-known city and one little-known city) for 2,000 ms each. 
Participants were then prompted to indicate which of these two cities has more inhabitants by pressing a button.  The four display screens 
were separated by 1,000-ms interstimulus intervals. The electroencephalography (EEG) data for each trial were segmented into two 2,500-ms 
epochs, one for each city. Each epoch covered the time window from 500 ms prior to the presentation of the city name to the offset of the 
city name (data from the Cz recording site are shown here). Amplitude differences between the two epochs of each trial (see the bottom row 
for an illustration) were entered as predictors into the binary logistic regression analysis. The gray shading indicates the early time window 
(300–450 ms) during which familiarity-based recognition effects are known to occur. Dotted vertical lines indicate the four time windows 
of interest between 350 and 1,500 ms. Event-related potentials (ERPs), as displayed in Figure 3, were derived by averaging the epochs for the 
well-known and little-known cities; such averaging is a standard procedure for analyzing EEG data.
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presented sequentially for 2,000 ms each, and the four screens 
were interleaved with interstimulus intervals lasting 1,000 ms. 
The order of known and little-known cities was counterbal-
anced during the experiment. Each of the city names was pre-
sented twice during the experiment.

Electrophysiology
Elastic caps (Easycap, Herrsching, Germany) with 58 embed-
ded Ag/AgCl EEG electrodes were attached to the subjects’ 
heads. Electrode locations in these caps are based on an 
extended 10-20 system (10-10 system). EEG data were con-
tinuously recorded, referenced to the left mastoid. In addition, 
electroocular activity was recorded from two pairs of elec-
trodes placed at the outer canthi and below and above the right 
eye. Data were sampled at a rate of 500 Hz and filtered on-line 
from 0.016 Hz (time constant = 10 s) to 250 Hz. Electrode 
impedances were kept below 5 kΩ.

Data were filtered off-line from 0.1 Hz to 35 Hz (48 dB), 
with an additional notch filter added to suppress line activity, 
and rereferenced to linked mastoids. The impact of eye 
movements and blinks on EEG activity was eliminated by a 
correction algorithm implemented in the analysis tool (Vision- 
Analyzer 2.01, Brain Products, Gilching, Germany); this 
algorithm was based on an independent component analysis 
(ICA). Subsequently, EEG data were segmented into epochs 
of 2,500-ms duration, including a 500-ms baseline, and base-
line corrected. Trials with EEG activity falling outside the 
range of –100 to +100 µV were excluded.

In a first step, ERPs in response to well-known and little-
known city names were obtained for each individual subject 
and then averaged across participants without regard for the 
subjects’ responses. For each subject, ERPs were based on an 
average of 118 trials (range = 99–120) for well-known city 
names and 119 trials (range = 102–120) for little-known city 
names. Mean amplitude values from 300 to 450 ms (covering 
familiarity-based recognition effects), 450 to 600 ms (cover-
ing recollection-based recognition effects), 600 to 1,000 ms, 
and 1,000 to 1,500 ms were extracted and entered into an anal-
ysis of variance with city publicity (well-known, little-known), 
anterior-posterior electrode (F, FC, C, CP, P), and lateral-
medial electrode (8, 4, z, 3, 7) as within-subjects factors. ERP 
difference values were calculated by subtracting ERPs in 
response to little-known city names from ERPs in response to 
well-known city names. Then, the topographic change in the 
recognition effects from the first to the second time window 
was tested in an analysis of variance on these ERP difference 
values with anterior-posterior electrode (F, FC, C, CP, P), lat-
eral-medial electrode (8, 4, z, 3, 7), and time window (300–
450 ms, 450–600 ms) as within-subjects factors. These 
difference values are depicted as maps in Figure 3b. Green-
house-Geisser correction for nonsphericity was applied when 
necessary and is indicated by referring to the ε value.

In the second step of data analysis, single-trial data from 
the electrodes Fz, Cz, and Pz were exported. For each single 

trial, we quantified the mean EEG amplitudes between 300 to 
450 ms, 450 to 600 ms, and 1,000 to 1,500 ms after the onset 
of the first city name and the onset of the second city name at 
three electrodes (Fz, Cz, Pz), and amplitudes in response to 
City 2 were subtracted from amplitudes in response to City 1, 
as schematically illustrated in Figure 2b. For each subject, dif-
ference values of on average 116 trials (range = 93–120) were 
entered into the analysis. Subsequently, we used these voltage 
differences to predict the behavioral decision in each trial. All 
decisions of all participants were entered into binary logistic 
regression models with participants’ decisions as the criterion 
and the voltage differences as predictors. Three models were 
calculated (Fig. 4): In Model 1, Fz and Cz data during the time 
window of 300–450 ms were used as predictors. In Model 2, 
differences in activation on Pz during the time window 450–
600 ms were added, and the nonsignificant predictor of Model 
1 (Fz data from 300–450 ms) was removed. In Model 3, differ-
ences in activation at Fz, Cz, and Pz during the time window 
1,000–1,500 ms were added.

Results
Participants selected the well-known city name 90.5% of the 
time, correctly identifying the larger of the two cities in 79.3% 
of trials. When participants chose the well-known city name, 
84.9% of the responses were correct. In contrast, only 26.4% 
of the responses were correct when the little-known city name 
was chosen.

In the first step of the analysis, ERPs in response to well-
known and little-known city names were compared in order to 
reveal the general effects of publicity. This comparison showed 
pronounced differences in the ERPs during the 300- to  
450-ms, 450- to 600-ms, and 1,000- to 1,500-ms time windows 
(Fig. 3a). From 300 to 450 ms, well-known city names elicited 
more positive-going waveforms than little-known city names 
did, F(1, 19) = 25.15, p < .001, particularly at fronto-central 
electrodes. From 450 to 600 ms, the ERPs in response to well-
known city names continued to be more positive, F(1, 19) = 
23.30, p < .001, with the largest differences in this time win-
dow found over parietal electrode sites. The anterior-posterior 
distribution of the publicity effect (well-known city name vs. 
little-known city name) changed significantly from the 300- to 
450-ms to the 450- to 600-ms time windows, F(4, 76) = 6.18,  
p = .016, ε = .303 (Fig. 3b). In the late time window (1,000–
1,500 ms), the polarity of the main effect was reversed, such 
that ERPs in response to well-known city names were more 
negative-going than ERPs in response to little-known city 
names, F(1, 19) = 32.10, p < .001, with a maximum difference 
over posterior electrode sites.

In the second step of the analysis, in line with the main goal 
of the current study, we constructed three models to predict the 
participants’ responses on the basis of single-trial EEG data. 
All three binary logistic regression models were significant 
(i.e., the single-trial data predicted the participants’ decisions), 
and all included voltage differences of the early time window 
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Fig. 3.  Event-related potentials (ERPs) averaged across responses to well-known city names and little-known city names. ERP waveforms 
at Fz, Cz, and Pz (a) are shown for the 2,500-ms time window ranging from 500 ms prior to stimulus presentation to the end of stimulus 
presentation.  The four time windows of interest (300–450 ms, 450–600 ms, 600–1,000 ms, and 1,000–1,500 ms) are indicated by dotted 
vertical lines.  Topographic maps showing the difference in responses to well-known city names and little-known city names (b) were 
created for the four time windows of interest. Amplitudes are color-coded.
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(300–450 ms) as predictor. In the first model, only voltage dif-
ferences of the early time window at the electrodes Fz and Cz 
were entered as predictors. The model was significant, χ2(2,  
N = 2,322) = 43.88, p < .001 (Fig. 4, Table 1),1 showing that 
participants’ decisions could be predicted by EEG data solely 
from this early time window, which comprises the ERP corre-
late of familiarity-based recognition (Jäger et al., 2006; Rugg 
& Curran, 2007; Woodruff et al., 2006). In this model, the 
voltage differences at Cz but not at Fz were a significant pre-
dictor of participants’ decisions. This pattern of results is con-
gruent with the topography of the early ERP effect, which was 
most pronounced at central electrodes.

In the second model, the voltage differences at Pz in the 
time window from 450 to 600 ms were added as predictors. At 
parietal electrode sites in this latency range, recollection-based 
processes are observed in ERPs (Rugg & Curran, 2007; Rugg 
et al., 1998; Wilding, 2000). Inclusion of data from this later 
time window slightly improved predictions of the participants’ 
decisions, χ2(2, N = 2,322) = 56.79, p < .001 (Fig. 4, Table 1). 
Note that in this model, the EEG data from the early time 

window remained a significant predictor of participants’ 
decisions.

This pattern held true in the third model, when activation 
differences of later time windows (1,000–1,500 ms), presum-
ably reflecting participants’ usage of other knowledge sources, 
their response preparation, or both of these possibilities, were 
added as predictors. The amount of correctly predicted deci-
sions increased to 62.3%, χ2(2, N = 2,322) = 242.30, p < .001 
(Fig. 4, Table 1), and the voltage differences of the early time 
window remained a significant predictor.

To further corroborate the validity of using EEG data for 
predicting decisions, we investigated the predictive validity 
of all three models in a cross-validation analysis. The data 
sample of each participant was randomly split into two sub-
samples, and one subsample was used for estimating the 
logistic regression functions with which we then predicted 
the decisions of the other subsample. All three models sig-
nificantly predicted the behavioral decisions, leading to 58.1% 
correct predictions for the first model, χ2(1, N = 1,177) = 
32.13, p < .001; 56.4% correct prediction for the second 

p < .001

p < .01

p > .05

300–450 ms
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χ2(2, N = 2,322) = 43.88,

p < .001
55.8% Correct Predictions
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Fz 
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Fig. 4. Time windows and electrodes used in the three logistic regression models created for predicting participants’ decisions. Single-trial 
differences in activation at electrodes Fz, Cz, and Pz during the time windows spanning 300 to 450 ms (covering familiarity), 450 to 600 ms 
(covering recollection), and 1,000 to 1,500 ms (covering the usage of knowledge and possible strategies) were used as predictors. The chosen 
predictors directly follow from event-related potential effects significant at the group level. In Model 1, Fz and Cz data during the 300- to 450-ms 
time window were used as predictors. In Model 2, differences in activation at Pz during the 450- to 600-ms time window were added, and the 
nonsignificant predictor of Model 1 (Fz data from 300 to 450 ms) was removed. In Model 3, differences in activation at Fz, Cz, and Pz during the 
1,000- to 1,500-ms time window were added.

Table 1.  Results From the Three Regression Models:  Wald Statistics for Each Electrode and Time Window

Model and statistic
Fz:  

300–450 ms
Cz:  

300–450 ms
Pz:  

450–600 ms
Fz:  

1,000–1,500 ms
Cz:  

1,000–1,500 ms
Pz:  

1,000–1,500 ms

Model 1
  Wald statistic 1.40 9.36 — — — —
  p .24 .002 — — — —
Model 2
  Wald statistic — 8.35 14.17 — — —
  p — .004 < .001 — — —
Model 3
  Wald statistic — 23.97 76.95 0.03 3.57 51.68
  p — < .001 < .001 .86 .06 < .001
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model, χ2(1, N = 1,177) = 20.53, p < .001; and 64.4% correct 
predictions for the third model, χ2(1, N = 1,177) = 97.87, p < .001.

Discussion
In the study reported here, we asked participants to perform a 
city-size comparison task. The amount of correct responses 
(79.3%) was clearly above chance level. This relatively high 
level of task performance can be explained by the fact that 
participants adhered to the recognition heuristic. In approxi-
mately 90% of the trials, they chose the well-known city 
instead of the lesser-known city as being the larger one. This 
percentage of trials is close to values reported by other studies 
using the city-size comparison task (Goldstein & Gigerenzer, 
2002; Volz et al., 2006). In contrast to trials in which partici-
pants adhered to the recognition heuristic, performance was 
below chance level when participants chose the little-known 
city name (26.4% correct responses). This performance level 
is, nevertheless, slightly better than one would expect from the 
average probability that a little-known city was the larger one 
(p = .16). Thus, criteria other than the recognition of a city 
name might in some cases have provided valid clues about the 
city size, but on average the participants would have per-
formed better if they had ignored any criteria other than 
whether they recognized the name of the city.

The ERPs in response to well-known and little-known city 
names differed significantly between 300 to 450 ms, 450 to 600 
ms, and 1,000 to 1,500 ms. The early midfrontal ERP effect is 
likely to reflect familiarity-based recognition processes, which 
are fast acting and relatively automatic (Rugg & Curran, 2007). 
These processes arise before extensive comparisons or evalua-
tions of city names can take place based on other knowledge 
sources and, thus, correspond to what Goldstein and Gigerenzer 
(2002, p. 77) called “mere recognition.” As outlined, the early 
midfrontal ERP effect reflects a continuous index of memory 
strength, which was found to covary with the level of city famil-
iarity, as indexed by response confidence during recognition 
judgments (Woodruff et al., 2006).

In contrast, the parietally distributed ERP effect at 450 to 
600 ms is assumed to reflect a more effortful retrieval process 
that gives rise to consciously accessible information (Jäger  
et al., 2006; Rugg & Curran, 2007). The effect is influenced 
among other things by the depth of encoding (Rugg et al., 
1998) and the correctness of source judgments (i.e., judgments 
about the context in which one has encountered a memorized 
item; Wilding, 2000). What kind of information was recol-
lected when a well-known city name was presented is difficult 
if not impossible to assess. It could in principle be any kind of 
available information associated with the city name.

The ERP findings indicate that both familiarity-based and 
recollection-based recognition took place when participants 
encountered the well-known city names. However, at the group 
level, the ERP responses do not provide any evidence that mere 
recognition contributed to the participants’ decisions. In princi-
ple, names of well-known cities might have elicited familiarity 

effects, but subjects might have made their decision only on the 
basis of consciously assessable information, like the city size 
itself or (if this information was not available) indirect indica-
tors of the city size, such as whether the named city has an air-
port, a soccer team in the premier league, or an exhibition center 
(Goldstein & Gigerenzer, 2002).

With the second step in the data analysis, we aimed to pre-
dict the participants’ decisions by using single-trial EEG data 
to evaluate the impact of familiarity-related processes on the 
decision processes. The results of this analysis showed that 
EEG data from the early time window (reflecting familiarity-
based recognition) were indeed predictive of the participants’ 
decisions. Note that we could predict the size judgment as 
early as 300 to 450 ms after the presentation of the city name 
and, thus, well before the participants actually made their deci-
sions. The inclusion of EEG data of later time windows 
(reflecting conscious recollection and other cognitive pro-
cesses) in the regression analysis improved the amount of cor-
rectly predicted decisions, but EEG data from the early time 
window remained a significant predictor of participants’ deci-
sions. Our findings indicate that early familiarity-based pro-
cesses had a fundamental impact on the participants’ decisions, 
even though participants appeared to use other kinds of infor-
mation for their decisions as well.

A final note concerns the fact that even when EEG data 
from later time windows were included in the regression 
model, the prediction of participants’ decisions was still worse 
than the participants’ accuracy. This finding can primarily be 
explained by the inherently low signal-to-noise ratio of single-
trial EEG data. Furthermore, it should be noted that we did not 
seek to minimize prediction error by using the whole range of 
recorded EEG data (e.g., by decomposing the EEG signal into 
its spectral contents) or by using more sophisticated pattern-
classifier techniques (e.g., as described by Newman & Nor-
man, 2010). Instead, we focused our single-trial analysis on 
commonly accepted electrophysiological correlates of famil-
iarity- and recollection-based recognition processes in the 
ERP domain (Jäger et al., 2006; Rugg & Curran, 2007). Nev-
ertheless, findings show that, alongside ERP and event-related 
fMRI studies, single-trial EEG analysis offers an intriguing 
possibility for understanding the neural basis of decision 
making.
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Note

1. In our principal analysis, we used a nonhierarchical logistic 
regression model, meaning that we did not differentiate between the 
level of participants and the level of single trials. We acknowledge 
that hierarchical linear models might be a valid alternative way of 
analyzing the data. To rule out a potential impact of the currently 
employed regression model on the current findings, we computed a 
hierarchical multiple regression with the single trial as the individual-
level factor (Level 1) and the participant as the group-level factor 
(Level 2). The dependent variable was participants’ decisions, which 
were coded as 0 or 1 (cf. Myers & Broyles, 2000, for applying 
regression coefficient analysis in a repeated measures design with 
a binary criterion). The analysis with this hierarchical linear model 
revealed essentially the same major findings as reported here for the 
nonhierarchical logistic regression model; most important in this 
additional analysis, the amplitude difference at Cz in the 300- to 
450-ms time window remained a significant predictor and did not 
significantly vary at the level of participants.
  Furthermore, we computed logistic regression functions for each 
individual participant. Again, results of this analysis were in line 
with results of the reported main analysis. For example, for Model 
1, the best-fitting regression model for 18 out of 20 participants was 
in line with the regression model for the pooled data. In addition, for 
14 out of 20 participants, the amplitude difference at Cz from 300 
to 450 ms was a significant predictor in these individual regression 
functions.
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