
Feedback timing modulates interactions between feedback
processing and memory encoding: Evidence
from event-related potentials

Gerrit Höltje1
& Axel Mecklinger1

# The Psychonomic Society, Inc. 2020

Abstract
Feedback-based learning relies on a procedural learning system driven by reward prediction errors (RPEs). The processing of
temporally delayed feedback is supported by brain structures associated with declarative memory processes, but it is still
unknown how delayed feedback processing and memory encoding interact. In this study, a subsequent memory paradigm was
employed to investigate how the incidental encoding of feedback pictures presented with a short (SD, 500 ms) or long (LD, 6500
ms) delay in a probabilistic learning task affects the event-related potential (ERP) correlate of RPEs (i.e., the feedback-related
negativity; FRN). In an ensuing test phase, a surprise recognition memory test for the feedback pictures was conducted. FRN
amplitudes measured in the feedback-locked ERPs recorded during the learning phase (FRNpeak) and in the negative minus
positive feedback difference wave (FRNdiff) were compared for subsequently remembered and forgotten feedback pictures.
Feedback processing as reflected in the FRNpeak was diminished for remembered LD feedback pictures, indicating that delayed
feedback processing and memory encoding competed for similar neural processing resources. As evidenced by large FRNdiff

amplitudes in the SD condition, the evaluation of shortly delayed feedback strongly relied on the procedural learning system. A
complementary model-based single trial analysis was conducted to validate models of the functional significance of the FRN.
Consistent with previous studies, feedback-locked N170 and P300 amplitudes were sensitive to feedback delay. In the test phase,
memory for LD feedback pictures was better than for SD pictures and accompanied by a late old–new effect, presumably
reflecting extended recollective processing.
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Feedback-based learning relies on the evaluation of outcomes
associated with an action and is driven by reward prediction
errors (RPEs) indicating the deviation between the expected
and received outcome of an action. At the neurobiological
level, this procedural type of learning is mediated by the pha-
sic activity of midbrain dopamine neurons and their projec-
tions to the striatum (Pessiglione, Seymour, Flandin, Dolan, &
Frith, 2006; Schultz, 1998). Recent neuroimaging research
suggests that, depending on the learning situation, feedback-

based learning can also be supported by medial temporal lobe
(MTL) structures associated with declarative memory pro-
cesses (Delgado & Dickerson, 2012; Shohamy & Daw,
2014). For instance, it has been found that temporally delayed
feedback processing is associated with a strong involvement
of the hippocampus and a high proportion of correct high-
confidence memory decisions for feedback pictures (Foerde
& Shohamy, 2011; Lighthall, Pearson, Huettel, & Cabeza,
2018). The latter results suggest that declarative memory for
delayed feedback events benefits from the hippocampal in-
volvement during the initial processing of these events.

Other studies have found that memory encoding and re-
trieval interfere with feedback processing and reward learning
(Dickerson & Delgado, 2015; Wimmer, Braun, Daw, &
Shohamy, 2014). In the study conducted by Wimmer and
colleagues, participants chose between two options that were
each associated with a fluctuating reward probability. Task-
unrelated pictures were presented together with the choice
options. Successful memory encoding was associated with
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diminished reward learning, higher hippocampal-striatal con-
nectivity, and decreased striatal RPE signals, suggesting that
incidental memory encoding interfered with reward learning
due to a competition for striatal processing resources.

In studies examining event-related brain potentials (ERPs),
the feedback-related negativity (FRN) is associated with the
processing of RPE signals elicited by feedback during learn-
ing (Sambrook & Goslin, 2015; Walsh & Anderson, 2012).
Recent studies have emphasized that the FRN signal results
from an overlap between the N200 and a later positivity elic-
ited by positive feedback (reward positivity; Holroyd, Pakzad-
Vaezi, & Krigolson, 2008; Proudfit, 2015). Studies showing
that larger reward positivity amplitudes are predictive of later
successful recognition of to-be-learned associations (Arbel,
Goforth, & Donchin, 2013), and pictures presented together
with positive feedback (Höltje & Mecklinger, 2018) suggest
that reward signals elicited by positive feedback can support
memory encoding.

Even though the brain systems associated with feedback-
based learning and declarative memory have been disclosed
(Eichenbaum & Cohen, 2001; Shohamy & Daw, 2014), it is
less clear under which circumstances these learning systems
interact, and how this is reflected in electrophysiological mea-
sures of feedback processing. To shed further light on these
questions, the present study investigated how feedback pro-
cessing as reflected in the FRN interacts with concurrent inci-
dental memory encoding under two different conditions—
namely, when feedback processing strongly relies on the pro-
cedural learning system (shortly delayed feedback) or engages
the declarative learning system (long delayed feedback).
Participants performed a probabilistic learning task in which
they used feedback to learn associations between Chinese
characters and responses. Feedback was given in the form of
scene pictures that signaled the valence of the feedback (out-
door = positive, indoor = negative) and arrived with a short
(500 ms) or long (6,500 ms) temporal delay. Recognition
memory for the feedback pictures was tested in a surprise
memory test. To explore whether successful memory
encodingmodulates the FRN, a subsequent memory paradigm
was used: EEG activity recorded during feedback picture pre-
sentation in the learning task was sorted according to whether
a picture was subsequently remembered or forgotten (for
reviews, see Cohen et al., 2015; Paller & Wagner, 2002).

As stated above, the FRN signal results from an overlap
between the N200 and the later reward positivity. The N200 is
generally elicited by unexpected, task-relevant events
(including unexpected feedback; Folstein & Van Petten,
2008; Holroyd, 2004). When measured as the difference be-
tween the N200 and the preceding positive peak (i.e., the
P200), the FRN is sensitive to the salience (unexpectedness)
of feedback, irrespective of valence (Ferdinand, Mecklinger,
Kray, & Gehring, 2012). Delayed feedback processing is as-
sociated with larger amplitudes of this FRNpeak measure than

shortly delayed feedback (Höltje & Mecklinger, 2018;
Peterburs, Kobza, & Bellebaum, 2016). It is thus conceivable
that the FRNpeak is more sensitive to the processing of expec-
tancy violations in the declarative learning system and is less
specific for the processing of positive or negative action out-
comes. In contrast, the reward positivity is often measured as
the peak amplitude in the negative minus positive feedback
difference wave (i.e., the amplitude at the time point of the
maximal difference between the waveforms elicited by posi-
tive and negative feedback). In keeping with previous studies
(Höltje &Mecklinger, 2018; Peterburs et al., 2016), we denote
this measure as FRNdiff in the following. Consistent with the
view that the FRNdiff reflects the involvement of the procedur-
al learning system, which is more engaged by the processing
of immediate than delayed feedback outcomes (Foerde &
Shohamy, 2011), the FRNdiff is more pronounced for shortly
delayed than for long delayed feedback (e.g., Höltje &
Mecklinger, 2018; Peterburs et al., 2016; Weismüller &
Bellebaum, 2016). In the present study, both FRN measures
(FRNpeak and FRNdiff) were used to explore two distinct
feedback-related processes—namely, general expectancy vio-
lations as reflected in the FRNpeak and the processing of un-
expected positive outcomes as indexed by the FRNdiff.

We expected to replicate previous findings—namely, that
shortly delayed feedback is associated with larger FRNdiff am-
plitudes than long delayed feedback, and the reverse pattern
(larger amplitudes for long delayed than for shortly delayed
feedback) applies to the FRNpeak. Finding that the amplitude
of the FRNpeak or FRNdiff differs between subsequently remem-
bered and forgotten pictures would suggest that feedback pro-
cessing and memory encoding interact electrophysiologically.

In recent years, there has been considerable debate about
the question whether the FRN reflects the processing of re-
ward prediction errors, a parameter that codes the reward val-
ue (positive or negative) and expectedness of an outcome. An
alternative account states that the FRN is more sensitive to
general expectancy violations irrespective of valence (e.g.,
Ferdinand et al., 2012; Oliveira, McDonald, & Goodman,
2007). Computational modeling is a promising method to de-
cide between these accounts because it enables to compute
trial-by-trial estimates of prediction errors. In functional neu-
roimaging studies, computational models are widely used to
identify brain regions in which BOLD signals correlate with
model-derived learning signals (for reviews, see Daw &
Doya, 2006; O’Doherty, Hampton, & Kim, 2007). In a similar
vein, correlations between model-derived prediction errors
and single trial EEG data were used to validate models of
the functional significance of the FRNpeak and FRNdiff in the
present study. A computational reinforcement learning model
was used to estimate trial-by-trial reward prediction errors
(RPEs). Best fits between RPEs and EEG activity in the time
periods in which FRN effects are present would confirm that
the FRN reflects the processing of RPEs. We also computed
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unsigned RPEs that code the expectedness of an outcome
without taking into account its valence (better or worse than
expected). These unsigned RPEs thereby constitute salience
prediction errors (SPEs) that are largest when outcomes are
highly unexpected irrespective of their valence. As we as-
sumed that the FRNpeak is more sensitive to more general
expectancy violations, we expected best fits between SPEs
and EEG activity in the FRNpeak time interval.

The main goal of the present research was to investigate
interactions between feedback-based learning and memory
encoding by focusing on the FRN as the electrophysiological
correlate of reward prediction error signals in feedback process-
ing. In addition, we also explored other ERP components elic-
ited by feedback stimuli that have been shown to be sensitive to
feedback delay manipulations (i.e., the N170 and the P300).

Arbel, Hong, Baker, and Holroyd (2017) found that de-
layed feedback elicited larger (more negative) N170 ampli-
tudes than immediate feedback and proposed that the N170
constitutes a marker of the involvement of theMTL in delayed
feedback processing. We therefore expected delayed feedback
to be associated with larger N170 amplitudes and also ex-
plored whether this component predicts subsequent memory
for feedback pictures.

The P300 is thought to reflect the updating of the stimulus
context in memory (Donchin, 1981; Polich, 2007). Based on
the results obtained in two recent studies (Wang, Chen, Lei, &
Li, 2014; Weismüller & Bellebaum, 2016), we expected im-
mediate feedback to elicit stronger P300 amplitudes than de-
layed feedback.

Another aim of the present study was to explore the effects
of feedback delay on the retrieval of feedback events. Dual
process models of recognitionmemory assume that two distinct
processes, familiarity and recollection, contribute to recognition
memory (Yonelinas, 2002). Whereas familiarity refers to a fast
and context-free memory strength signal, recollection is a
slower threshold process that includes the retrieval of contextu-
al details. Familiarity and recollection are associated with qual-
itatively different patterns of ERP old–new effects (for reviews,
see Friedman & Johnson, 2000; Rugg & Curran, 2007).
Whereas familiarity elicits an early midfrontal old–new effect
(also denoted as FN400), recollectionmanifests in a late parietal
old–new effect. Even though previous studies have shown that
reward or positive feedback selectively boosts fast and context-
free familiarity-based remembering and selectively modulates
the midfrontal old–new effect (Eppinger, Herbert, & Kray,
2010; Höltje &Mecklinger, 2018), it is less clear how feedback
timing affectsmemory retrieval. As stated above, previous stud-
ies have found that delayed feedback processing is associated
with an involvement of the hippocampus. Because recollection
relies on the hippocampus (Eichenbaum, Yonelinas, &
Ranganath, 2007), we expected long delayed feedback pictures
to be associated with a stronger late parietal old–new effect than
shortly delayed feedback pictures.

Method

Participants

Fifty-eight healthy young adults participated in the experi-
ment. All participants were German native speakers, had nor-
mal or corrected-to-normal vision and no self-reported neuro-
logical or psychiatric conditions. The experimental procedures
were carried out in accordance with the Declaration of
Helsinki and approved by the ethics board of the Faculty of
Human and Business Sciences at Saarland University.
Participants gave their informed consent before the experi-
ment and received money (8€ per hour) or course credit as a
compensation for their participation. Fourteen participants had
to be excluded from all analyses—five participants were ex-
cluded because they did not learn the associations in the learn-
ing phase, as determined by their performance in the final
block of the probabilistic learning task (see Procedure), and
nine were excluded because they performed at chance level in
the test phase. The incidental nature of memory encoding in
the probabilistic learning task may have increased task diffi-
culty and thereby contributed to the relatively high number of
participants excluded because of poor recognition perfor-
mance. One further participant had to be excluded because
of a technical error. Thus, the behavioral analyses are based
on data from 43 participants (36 female, 36 right-handed).
Their age ranged between 19 and 30 years, with a median
age of 23 years. Because of the exclusion criteria for ERP
data, these analyses are based on a lesser number of data sets
(see EEG Recording and Processing). Behavioral results for
the full sample (except for the participant excluded because of
a technical error, N = 57) are provided in the supplementary
online material.

Stimuli

A total of 560 scene pictures, consisting of 280 indoor and 280
outdoor scenes, were used in this experiment. Four hundred of
these pictures were the same as in the Höltje and Mecklinger
(2018) study. One hundred and sixty additional scene pictures
were collected from various free Internet sources. The size of
the pictures was scaled to a width of maximal 600 pixels and a
height of maximal 450 pixels.

Procedure

The preparations for the EEG recording took about 45 mi-
nutes. Thereafter, participants were seated in front of a 19-
inch computer screen with a resolution of 1,280 × 1,024 pixels
in an electrically shielded and sound-attenuated booth. The
experimental tasks were presented using E-Prime 2 software
(Psychology Software Tools, Inc.), and participants used a
keyboard for their responses.
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The experiment consisted of a learning phase (25min), a test
phase (35 min), and two quiet rest phases of 15 minutes each
that took place before and after the learning phase. In the learn-
ing phase, participants learned associations between four differ-
ent Chinese characters and two response keys in a probabilistic
learning task with probabilistic feedback. Scene pictures were
presented as feedback, and the picture category designated the
valence of the feedback with a fixed mapping for all partici-
pants (outdoor = correct, indoor = incorrect; cf. Foerde &
Shohamy, 2011). The learning phase was followed by one
block in which participants continued performing the task with-
out feedback. The performance in this block served as a crite-
rion for learning success, and participants who performed at
chance level in this block were excluded from all analyses
(see Participants). In the test phase that followed approximately
20minutes after the learning phase, recognition memory for the
scene pictures was tested in a surprise memory test.

Learning phase Four different Chinese characters (汉, 礼, 归,
仗) were used in the probabilistic learning task, with two char-
acters assigned to each of the two feedback delay conditions
(short: 500 ms, long: 6,500 ms). The assignment of characters
and conditions was balanced across subjects. Every character
was associated with one of two responses (the c and n keys of
the keyboard). Participants were instructed to learn the asso-
ciations by trial and error and to use the feedback for this
purpose. Feedback was always presented with 70% validity,
meaning that when participants responded with the correct
(incorrect) button, they received positive (negative) feedback
in seven out of 10 times. Participants were informed that the
feedback would not always be valid, but the instructions em-
phasized that the feedback would be valid most of the time,
and that it was possible to use the feedback for learning.
Overall, there were 200 trials, which were divided into five
blocks of 40 trials each. Each character was presented 10
times per block, in pseudorandomized order, so that no char-
acter was repeated on the next trial, and not more than three
characters from the same delay condition were presented in
direct succession. Participants were given eight practice trials
before they started working on the task. The scene pictures
were divided into two lists of 280 pictures each (140 outdoor
and 140 indoor scenes). The pictures from one of these lists
were used as feedback pictures in the learning phase, and the
pictures from the other list served as lures in the ensuing
memory test. The assignment of the two lists to the feedback
or lure function was balanced across subjects. Each picture
was presented only once during learning, but not every picture
from the list was necessarily used as a feedback picture. The
reason for this is that the number of pictures presented from
one category (indoor or outdoor scene) ultimately depended
on the number of correct responses given by the participant.
Importantly, even if a participant’s responses were 100% cor-
rect (incorrect), no more than 140 outdoor (indoor) scene

pictures were presented. The reason for this is that feedback
was presented with 70% validity, as stated above.

A schematic of the trial procedure is depicted in Fig. 1a.
Each trial of the probabilistic learning task started with a cen-
tral fixation cross (500 ms), followed by a Chinese character
that was presented in the center of the screen. In the bottom
left and right corners of the screen, a blue and a yellow button
were presented. The buttons represented the left and right
response keys. As soon as the participant responded with
one of the keys, the chosen button remained on the screen,
and the other button disappeared. At the same time, the char-
acter was surrounded by a frame of the same color as the
chosen button. This screen served to make the choice salient
and was shown for a duration defined by the delay condition
(short: 500 ms, long: 6,500 ms). If the participants did not
respond within 1,500 ms after onset of the Chinese character,
they were informed that their response was too slow and the
trial was repeated. The delay period was followed by a central
fixation cross (500 ms) and a feedback picture (1,500 ms).
After the feedback, a blank screen was presented for
1,000 ms before the next trial started.

Performance in the learning phase was assessed as the pro-
portion of correct responses in the probabilistic learning task
and in the final block of the task without feedback. Avariance-
stabilizing transformation (arcsine transformation; Winer,
Brown, & Michels, 1991) was applied to the proportions of
correct responses before submitting them to statistical
analyses.

Test phase The 200 feedback pictures from the learning phase
were presented together with 200 new scene pictures in
pseudorandomized order, so that not more than three adjacent
target or lure items were presented in direct succession.
Moreover, the same number of target pictures from each cat-
egory (outdoor and indoor) was presented as lure pictures.
Participants were admitted a short break after every 80 trials.
In the beginning of each trial, a fixation cross was presented
with a duration jittered between 1,000 and 1,500 ms, followed
by a picture presented for 1,500 ms. Participants were
instructed to decide for every picture whether it was old or
new using a six-step confidence scale (sure old, probably old,
maybe old, maybe new, probably new, sure new). After the
presentation of the picture, a blank screen appeared for
1,000ms. Then, the question “Old or New?” appeared, togeth-
er with a depiction of the rating scale. The old–new decision
could be given as soon as the picture was presented. As soon
as participants made a response, a blank screen was shown for
1,000 ms before the next trial started.

To assess memory performance, Pr scores (Snodgrass &
Corwin, 1988) were calculated as the difference between the
proportions of correct and incorrect old decisions (hits and
false alarms). For this purpose, the corresponding three steps
of the confidence scale were collapsed into old and new
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decisions. In addition, high-confidence Pr scores were calcu-
lated based on sure and probably decisions only.

Computational modeling

A standard reinforcement learning model with two free param-
eters was fitted to each participant’s observed choices in the
learning phase (Daw, 2011). On each trial t of the probabilistic
learning task, participants chose either the left or the right

response button (choice ct = L or R). According to aQ-learning
model (Watkins, 1989), subjects assign an expected value Q to
each of the choice options. This expected value was initialized
at a value of 0.5 on the first trial and subsequently updated on
each trial according to the formula Qt + 1(ct) =Qt(ct) + α ∙ δt,
where α is a free learning rate parameter that indicates how
readily choice behavior is changed as a reaction to reinforce-
ment, with higher values signifying faster updating, and the
prediction error δt = rt −Qt(ct) is defined as the difference

Fig. 1. Trial procedure in the probabilistic learning task (a): At the
beginning of each trial, one of four Chinese characters was presented.
As soon as the participant made a choice, it was displayed for a
duration defined by the delay condition (short: 500 ms, long: 6,500

ms). Outdoor (indoor) scene pictures were presented as positive
(negative) feedback. Behavioral results in the learning phase (b) and in
the test phase (c). Beeswarm plots show individual data points in addition
to means and confidence intervals. (Color figure online)
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between the actually received (rt) and the expected value of the
outcome. The observation model that links the theoretically
expected choice values with the probabilities of the observed
choices was assumed to follow a softmax distribution:

P ct ¼ LjQt Lð Þ;Qt Rð ÞÞ ¼ exp β⋅Qt Lð Þð Þ
exp β⋅Qt Rð Þð Þþexp β⋅Qt Lð Þð Þ

�
.

The free inverse temperature parameter β indicates the ex-
tent to which the observed choices follow the learned values
of the choice options. The learning rate α and inverse temper-
ature β were estimated using a maximum likelihood estima-
tion procedure. The MATLAB function fmincon was used to
identify parameter values that minimized the inverse data like-
lihood (which is equal to maximizing the data likelihood). The
estimation of the free parameters was iterated twenty times
with random starting points and, as recommended by Daw
(2011), constrained by prior distributions that penalized the
data likelihood for extreme parameter values. The prior distri-
bution used for the learning rate αwas a beta distribution with
the shape parameters α = 1.1 and β = 1.1. This distribution
puts a strong penalty on learning rate values smaller than 0 and
larger than 1. The inverse temperature β was constrained by a
gamma distribution with the shape parameter α = 1.2 and the
scale parameter θ = 5. This distribution puts a strong penalty
on temperature values that are either smaller than or much
larger than zero. For every participant, the parameter pair that
yielded the highest likelihood was selected. These optimal
parameters were averaged across subjects and used as model
parameters. Initially, two separate models were fit to the short
and long delay conditions, the parameters of which are given
in Table 1. Because the estimated parameters and likelihoods
did not differ between the delay conditions, learning rate α:
t(42) = 0.24, p = .81, d = 0.05; inverse temperature β: t(42) =
0.46, p = .65, d = 0.09; likelihood: t(42) = 0.26, p = .79, d =
0.04, a combined model, collapsed across delay conditions,
was fit to the data (cf. Foerde & Shohamy, 2011). Likelihood
ratio tests (Daw, 2011) showed that all models provided a
better fit to the data than a chancemodel. Individual datapoints
for estimated parameters and model fits are provided in the
supplementary online material. The combined model param-
eters were then used to calculate trial-by-trial estimates of

reward prediction errors (RPEs) for every subject. Salience
prediction errors (SPEs) were computed by calculating the
absolute values of each RPE estimate.

EEG recording and processing

The EEG was recorded during the learning phase and the
recognition memory test from 28 Ag/AgCl scalp electrodes
embedded in an elastic cap with positions according to the 10–
20 electrode system (Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC3,
FCz, FC4, FC6, T7, C3, Cz, C4, T8, CP3, CPz, CP4, P7, P3,
Pz, P4, P8, O1, O2, and A2). The vertical and horizontal EOG
was recorded from four electrodes placed above and below the
right eye and at the canthi of the left and right eyes. The
electrodes were on-line referenced to a left mastoid electrode
(A1), and AFz was used as a ground electrode. The EEG was
amplified with a BrainAmp DC amplifier (Brain Products
GmbH) from 0.016 to 250 Hz and digitized at 500 Hz. For
off-line processing of the EEG data, the EEGLAB (Delorme
& Makeig, 2004) and ERPLAB (Lopez-Calderon & Luck,
2014) toolboxes for MATLAB (MathWorks, Inc.) were used.
Electrodes were rereferenced to the average of the left and
right mastoid electrodes. The data from the learning phase
and from the recognition memory test were bandpass-filtered
at 0.1–30 Hz using a second order Butterworth filter.
Segments were extracted from the learning phase data from
200 ms before feedback onset to 800 ms thereafter, and seg-
ments from 200 ms before picture onset to 1,500 ms thereafter
were extracted from the test phase data. The segments were
baseline corrected based on activity during the 200 ms before
feedback or picture onset. Independent component analysis
(ICA) was applied to the segmented data to correct for ocular
artifacts. Components associated with ocular artifacts were
identified and rejected manually based on their activations
and topographies. Segments containing artifacts were rejected
using the following criteria: A minimal and maximal allowed
total amplitude of ± 100 μV, a maximal difference of values of
150 μV during intervals of 200 ms (window steps of 100 ms),
a maximal allowed voltage step of 30 μV/ms, and maximal

Table 1. Reinforcement learning model parameters

Short delay Long delay Combined

Mean SEM Mean SEM Mean SEM

Learning rate (α) 0.22 0.04 0.21 0.03 0.16 0.03

Inverse temperatures (β) 10.37 1.25 9.72 1.10 11.13 1.18

Pseudo R2 0.32 0.05 0.30 0.05 0.29 0.05

Model fit (log likelihood) −47.30 3.75 −48.35 3.72 −98.79 7.58

Chance model fit −69.31 −69.31 −138.63
Liklihood ratio test p < .001 p < .001 p < .001
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100 ms activity with a deviation of less than 0.4 μV from the
maximum or minimum voltage in the segment. On average,
1.25% and 1.6% of all segments were rejected in the learning
phase and the test phase, respectively. One data set was ex-
cluded from the learning phase ERP analysis because of more
than 25% rejected segments. For the same reason, two data
sets were excluded from the test phase ERP analysis. Grand
average waveforms were low-pass filtered at 10 Hz for illus-
tration purposes.

ERPs in the learning phase ERPs were averaged for every
combination of the factors delay (short, long), valence (posi-
tive, negative), and memory (hits, misses). Feedback pictures
judged as being “old” or “new” in the test phase were counted
as hits and misses, respectively. For this purpose, the three
corresponding steps of the confidence scale were collapsed
into old and new decisions. Six data sets had to be excluded
from this analysis because there were not enough artifact-free
trials (<7) to calculate reliable ERPs in one of the conditions.
For the purpose of peak detection, the subject average wave-
forms were low-pass filtered at 10 Hz.

Because FRN effects are typica l ly larges t a t
frontocentral sites (Holroyd & Coles, 2002; Miltner,
Braun, & Coles, 1997), FRN measures were analyzed at
electrode FCz. The FRN was quantified in two ways: The
FRNpeak was measured according to an algorithm de-
scribed in Holroyd, Nieuwenhuis, Yeung, and Cohen
(Holroyd, Nieuwenhuis, Yeung, & Cohen, 2003; see
Ferdinand et al., 2012; Holroyd, Hajcak, & Larsen,
2006; Peterburs et al., 2016, for studies that used a
similar approach) as the difference between the N200 peak
(180–300 ms) and the preceding P200 peak (140–200 ms).
The FRNdiff was measured as the peak amplitude between
300 and 450 ms in the negative minus positive feedback
difference wave (cf. Becker, Nitsch, Miltner, & Straube,
2014; Peterburs et al., 2016; Weismüller & Bellebaum,
2016).

For the N170 quant i f ica t ion, e lec t rodes were
rereferenced to the average of all electrodes (cf. Arbel
et al., 2017). This was done because the mastoid electrodes
are located in close proximity to the occipitotemporal elec-
trode sites at which the N170 is usually largest, which com-
plicates the measurement of the N170 (Luck, 2014). N170
amplitudes were quantified as the difference between the
N170 peak (140–200 ms) and the preceding P100 peak (90–
150 ms) at electrodes P7 and P8.

As determined by an inspection of the waveforms, the
feedback-locked P300 peaked around 500 ms at electrode
Pz. P300 mean amplitudes between 450 and 600 ms were
analyzed at electrodes Fz and Pz.

Single trial EEG analysis From all artifact-free EEG segments
recorded in the learning phase, single trial mean amplitudes at

electrode FCz were extracted in 32 time bins of 25-ms dura-
tion each, ranging from zero to 800ms after stimulus onset. To
ensure that the results of the single trial EEG analysis were
based on the same data as the ERP results in the learning
phase, we restricted this analysis to the same 36 subjects that
were included in the ERP analysis. For every subject, stan-
dardized trial-by-trial RPE and SPE estimates derived from
the reinforcement learning model (see Computational
Modeling) were used to predict standardized single-trial mean
amplitudes across the experimental conditions in separate lin-
ear regression models for every time bin. The correlations
(beta weights) between model-derived RPEs/SPEs and single
trial EEG amplitudes were then submitted to a statistical
analysis.

ERPs in the test phase ERPs were averaged for every com-
bination of the factors valence (positive, negative) and item
status (short delay hits, long delay hits, correct rejections).
One data set had to be excluded from this analysis because
there were not enough artifact-free trials (<7) to calculate
reliable ERPs in one of the conditions. Mean amplitudes
were analyzed in two adjacent time windows, ranging from
300–500 ms and 500–1,100 ms. The early time window is
typically used for the analysis of FN400 effects in ERP
studies of recognition memory (see Rugg & Curran, 2007,
for a review). The later 500–1,100 ms time window was
chosen because, as evident from Fig. 3c, an inspection of
the waveforms suggested that the late old–new effect con-
tinued until approximately 1,100 ms at anterior electrodes.
In order to cover frontal electrode sites, where FN400 ef-
fects are largest, as well as parietal electrode sites at which
late old–new effects are typically most pronounced, mean
amplitudes were analyzed at 15 electrodes broadly distrib-
uted across the scalp (F3, Fz, F4, FC3, FCz, FC4, C3, Cz,
C4, CP3, CPz, CP4, P3, Pz, P4).

Statistical analyses

All statistical analyses were conducted using IBM SPSS
software. Behavioral and electrophysiological measures
were analyzed using repeated-measures ANOVAs and de-
pendent t tests. Greenhouse–Geisser-corrected degrees of
freedom and p values are reported whenever the assumption
of sphericity was violated. Significant effects were
decomposed using lower level ANOVAs and dependent t
tests. As measures of effect sizes, partial eta squared (ηp

2)
are reported for ANOVA results. For independent t tests,
Cohen’s d was calculated. For dependent t tests, d was cal-
culated according to Dunlap, Cortina, Vaslow, and Burke
(1996), taking into account the correlations between mea-
surements. Error margins in graphs represent 95% confi-
dence intervals based on the mean square error of the
depicted effect (Jarmasz & Hollands, 2009).
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Results

Performance in the learning phase

Correct responses in the probabilistic learning task are
depicted as a function of delay and block in Fig. 1b and were
analyzed in a 2 (delay: short, long) × 5 (block) ANOVA. A
main effect of block was found, F(3.04, 127.56) = 70.08, pcorr
< .001, ηp

2 = .63, indicating that the frequency of correct
responses changed during the course of the learning task.
Subsidiary t tests revealed that correct responses increased
from the first to the second block, t(42) = 7.37, p < .001, d =
0.91, from the second to the third block, t(42) = 4.22, p < .001,
d = 0.52, from the third block to the fourth, t(42) = 2.61, p <
.05, d = 0.33, and from the fourth block to the fifth, t(42) =
2.03, p < .05, d = 0.24. No main effect of delay, F(1,42) < 1, p
= .63, ηp

2 = .01, and no Delay × Block interaction, F(4, 168) <
1, p = .96, ηp

2 = .00, were found. Correct responses in the final
block of the probabilistic learning task (without feedback) are
shown in Fig. 1b and did not differ between the two delay
conditions, t(42) = 0.98, p = .33, d = 0.20.

Recognition memory in the test phase

Pr scores and high-confidence Pr scores are given as a func-
tion of delay and valence in Fig. 1c. Pr scores were analyzed in
a 2 (delay: short, long) × 2 (valence: positive, negative)
ANOVA. There was a significant main effect of delay, F(1,
42) = 5.08, p < .05, ηp

2 = .11, driven by higher Pr scores for
long delayed feedback pictures. The main effect of valence
was also significant, F(1, 42) = 40.72, p < .001, ηp

2 = .49,
reflecting higher Pr scores for negative (indoor) than for pos-
itive (outdoor) feedback pictures. The Delay × Valence inter-
action was not significant, F(1, 42) < 1, p = .56, ηp

2 = .01.
The analysis of the high-confidence Pr scores did not yield

a significant main effect of delay, F(1, 42) = 3.49, p = .07, ηp
2

= .08, but only a strong main effect of valence, F(1, 42) =
40.23, p < .001, ηp

2 = .49, reflecting higher scores for negative
(indoor) than for positive (outdoor) feedback pictures. The
Delay × Valence interaction was not significant, F(1, 42) <
1, p = .41, ηp

2 = .02.

ERPs in the learning phase

FRNpeak and FRNdiff Feedback-locked ERPs in the learning
phase are shown at electrode FCz as a function of delay, va-
lence, and memory in Fig. 2a. The corresponding FRNpeak

amplitudes were analyzed in a 2 (delay: short, long) × 2 (va-
lence: positive, negative) × 2 (memory: hit, miss) ANOVA.
This analysis yielded a significant main effect of valence, F(1,
35) = 9.93, p < .01, ηp

2 = .22, driven by more negative am-
plitudes for negative feedback pictures than for positive feed-
back pictures. Notably, a significant Delay × Memory

interaction was obtained, F(1, 35) = 4.40, p < .05, ηp
2 = .11.

Long delayed feedback pictures that were subsequently for-
gotten elicited more negative FRNpeak amplitudes than those
that were subsequently remembered, t(35) = 2.16, p < .05, d =
0.14. In contrast, no difference was found between subse-
quently remembered and forgotten feedback pictures that
were presented with a short delay, t(35) = −1.28, p = .21, d
= −0.10. No further ANOVA effects reached significance, all
p values > .40.

Negative minus positive feedback difference waves are
shown as a function of delay and memory in Fig. 2b.
FRNdiff peak amplitudes were analyzed in a 2 (delay: short,
long) × 2 (memory: hit, miss) ANOVA that yielded a signif-
icant main effect of delay, F(1, 35) = 8.53, p < .01, ηp

2 = .20,
driven by more negative amplitudes for shortly delayed feed-
back pictures than for long delayed feedback pictures. No
significant main effect of memory, F(1, 35) < 1, p = .50, ηp

2

= .01, and no Delay × Memory interaction, F(1, 35) < 1, p =
.41, ηp

2 = .02, were obtained.

N170 Feedback-locked waveforms at electrodes P7 and P8 are
depicted in Fig. 3a. N170 amplitudes were analyzed in a 2
(delay: short, long) × 2 (memory: hit, miss) × 2 (electrode:
P7, P8) ANOVA that yielded a significant main effect of de-
lay, F(1, 35) = 9.13, p < .01, ηp

2 = .21, reflecting larger N170
amplitudes elicited by long delayed than by shortly delayed
feedback pictures. No further effects reached significance, all
p values > .16.

P300 Feedback-locked waveforms at electrode Pz are shown
in Fig. 3b. Mean amplitudes in the 450–600-ms time window
were analyzed in a 2 (delay: short, long) × 2 (valence: positive,
negative) × 2 (memory: hit, miss) × 2 (electrode: Fz, Pz)
ANOVA that yielded significant main effects of delay, F(1,
35) = 5.25, p < .05, ηp

2 = .13, and valence, F(1, 35) = 5.41, p <
.05, ηp

2 = .13, qualified by a Delay × Valence × Electrode
interaction, F(1, 35) = 8.28, p < .01, ηp

2 = .19. No further
effects involving the experimental factors reached signifi-
cance, all p values > .09. To disentangle the significant triple
interaction, mean amplitudes at electrodes Fz and Pz were
analyzed in separate ANOVAs including the factors delay,
valence, and memory. At electrode Fz, a significant main ef-
fect of valence was obtained, F(1, 35) = 9.76, p < .01, ηp

2 =
.22, reflecting more positive amplitudes elicited by positive
than by negative feedback pictures. No further effects reached
significance, all p values > .08. At electrode Pz, more positive
amplitudes were elicited by shortly delayed than by long de-
layed feedback pictures, F(1, 35) = 4.46, p < .05, ηp

2 = .11. No
further effects reached significance, all p values > .10.

Correlations between prediction error estimates and EEG ac-
tivity in the learning phase The analysis of FRN amplitudes in
the learning phase were complemented by a model-based

Cogn Affect Behav Neurosci



single trial EEG analysis that was aimed at validating models
of the functional significance of the FRNpeak and FRNdiff mea-
sures used in the present study. High correlations between
EEG amplitudes and trial-by-trial estimates of reward predic-
tion errors (RPEs) in time windows in which FRNpeak and
FRNdiff effects were present would confirm that EEG activity
in these time windows reflects the processing of RPEs. High
correlations between EEG amplitudes and salience prediction
errors (SPEs) in the FRNpeak and FRNdiff time windows would
indicate that EEG activity in these time windows is sensitive
to general expectancy violations irrespective of valence.

Mean correlations between model-derived trial-by-trial
RPE and SPE estimates and feedback-locked single trial
EEG amplitudes at electrode FCz are depicted as a function
of time in Fig. 2c. Correlations between RPEs and EEG ac-
tivity were marked by two distinctive positive peaks around
200 and 400 ms, indicating that large negative RPEs (as elic-
ited by unexpected negative feedback) were associated with
more negative EEG amplitudes around these time points.
Correlations between SPEs and EEG activity showed a pro-
nounced negative peak around 200 ms, suggesting that unex-
pected feedback, irrespective of valence, was associated with
more negative EEG amplitudes around this time point. These
observations were confirmed by a series of t tests testing the
significance of the mean correlations between RPEs/SPEs and

EEG activity in each of the 32 time bins. When correcting for
multiple comparisons (α = 0.0016), significant correlations
between EEG amplitudes and RPE estimates were obtained
in the 150–300-ms and the 350–425-ms time intervals in
which FRNpeak and FRNdiff effects were present, and in a later
(550–625 ms) time interval. Significant correlations between
EEG amplitudes and SPEs were only present in the 150–275-
ms time window in which the FRNpeak was measured.

Taken together, EEG activity in the FRNpeak and FRNdiff

time windows reflected the processing of RPEs, as evidenced
by high correlations between EEG amplitudes and RPE esti-
mates. In contrast, significant correlations between EEG am-
plitudes and SPEs were confined to the early FRNpeak time
window, which suggests that EEG activity in this time win-
dow was sensitive to general expectancy violations irrespec-
tive of whether the feedback was better (positive) or worse
(negative) than expected.

ERPs in the test phase

ERPs waveforms associated with correct memory decisions
in the recognition memory test are depicted in Fig. 3c. Mean
amplitudes in the 300–500-ms and 500–1,100-ms time win-
dows were analyzed in two separate four-way ANOVAs
including the factors valence (positive, negative), item status

Fig. 2. FRN and single trial EEG results in the learning phase. Feedback-
locked ERP waveforms (a) and negative minus positive feedback differ-
ence waves (b) at electrode FCz. Shaded areas indicate the time windows
used for the detection of P200/N200 peak amplitudes (140–300 ms) and
FRNdiff peak amplitudes (300–450 ms). Mean correlations between re-
ward and salience prediction errors (RPE/SPE) and single trial EEGmean

amplitudes at electrode FCz (c). Shaded areas indicate the time windows
in which significant correlations between single trial EEG mean ampli-
tudes and RPE (150–300 ms, 350–425 ms, 550–625 ms) and SPE (150–
275 ms) estimates were obtained. Beeswarm plots show individual
datapoints in addition to means and confidence intervals. (Color figure
online)
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(short delay hits, long delay hits, correct rejections), antpos
(F = frontal, FC = frontocentral, C = central, CP =
centroparietal, P = parietal), and side (left, midline, right).

In the 300–500-ms time window, a significant main effect
of valence was obtained, F(1, 41) = 29.60, p < .001, ηp

2 = .42,
reflecting more positive amplitudes elicited by positive feed-
back pictures than by negative ones. The Valence × Side in-
teraction was only marginally significant, F(1.58, 64.73) =
3.36, pcorr = .05, ηp

2 = .08. No further effects involving the
experimental factors reached significance, all p values > .25.

In the 500–1,100-ms time window, significant main effects
of valence, F(1, 41) = 45.76, p < .001, ηp

2 = .53, and item
status, F(2, 82) = 10.72, p < .001, ηp

2 = .21, were obtained,
qualified by significant interactions between valence and
antpos,F(1.27, 51.90) = 4.38, pcorr < .05, ηp

2 = .10; item status
and antpos, F(2.67, 109.37) = 6.80, pcorr < .01, ηp

2 = .14;

valence and side, F(1.64, 67.24) = 6.67, pcorr < .01, ηp
2 =

.14; and valence, antpos, and side, F(4.97, 203.80) = 2.69, p-
corr < .05, ηp

2 = .06. No further effects involving the experi-
mental factors reached significance, all p values > .26.
Because we were chiefly interested in the effect of item status,
which did not interact with valence, we further explored the
significant Item Status × Antpos interaction and conducted
separate one-way ANOVAs including the factor item status
for each level of the antpos factor. The main effect of item
status was significant at each level of the antpos factor. Effect
sizes were largest over frontocentral (ηp

2 = .21) and smallest
over parietal electrode sites (ηp

2 = .18). Subsidiary t tests
revealed that short delay hits did not differ significantly from
correct rejections, all p values > .07. In contrast, long delay
hits were associated with more positive mean amplitudes than
correct rejections at each level of the antpos factor. Effect sizes

Fig. 3. Feedback-locked waveforms in the learning phase at electrodes
P7 and P8 (a). Shaded areas indicate the time window used for the
detection of P100/N170 peak amplitudes (90–200 ms). Feedback-
locked waveforms in the learning phase at electrode Pz (b). Shaded areas
indicate the 450–600-ms time window in which P300 mean amplitudes
were analyzed. ERP waveforms associated with correct memory

decisions in the test phase are shown for three representative frontal,
central, and parietal electrodes (c). Shaded areas indicate the 300–500-
ms and 500–1,100-ms time windows used to analyze old–new effects.
Beeswarm plots show individual datapoints in addition to means and
confidence intervals. (Color figure online)
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were largest at frontal (d = 0.32) and smallest at parietal elec-
trodes (d = 0.15). Notably, long delay hits were also associated
with more positive mean amplitudes than short delay hits.
These effects were obtained at each level of the antpos factor,
but here, effect sizes were largest at parietal electrodes (d =
0.24) and smallest at frontal electrodes (d = 0.18).

Discussion

In the present study, ERPs were used to investigate interac-
tions between feedback-based learning and concurrent inci-
dental memory encoding of feedback pictures in a probabilis-
tic learning task. In the learning phase, participants used feed-
back pictures that were provided with either a short (500 ms)
or long (6,500 ms) temporal delay to learn associations be-
tween Chinese characters and motor responses. Based on ev-
idence from neuroimaging studies suggesting that the process-
ing of temporally delayed feedback engages the MTL-based
declarative learning system, we used a feedback delay manip-
ulation to establish a short delay condition in which feedback
processing should strongly rely on the procedural learning
system, and a long delay condition in which the declarative
learning system should be more involved in feedback process-
ing. As evidenced by the performance in the probabilistic
learning task, participants were able to use the feedback for
learning the stimulus–response associations and, consistent
with previous studies (e.g., Foerde & Shohamy, 2011;
Weismüller & Bellebaum, 2016), learned equally well in the
short and long feedback delay conditions.

The major goal of the present study was to explore how
feedback-based learning with long (and short) feedback delay
interacts with memory encoding. In previous studies investi-
gating the effects of feedback delay on memory for feedback
pictures, delayed feedback pictures were associated with a
higher proportion of correct high-confidence memory re-
sponses (Foerde & Shohamy, 2011; Lighthall et al., 2018).
Consistent with these studies, and in support of the view that
the involvement of the declarative memory system boosts
memory for feedback events, we found that long delayed
feedback pictures were remembered better than shortly de-
layed feedback pictures.

Of note, it has been argued that studies investigating inter-
actions between reward learning and memory encoding need
to control for motivational and attentional confounds that
could affect memory encoding (Murayama & Kitagami,
2014). In the present study, these confounds were avoided
by the use of an incidental learning paradigm. Furthermore,
the fixed assignment of picture and feedback categories (out-
door = positive, indoor = negative) ensured that participants
needed to process the picture content in order to use the feed-
back for learning. As these important boundary conditions
were met in the present study as well in previous studies

investigating the effects of feedback timing on memory
(Foerde & Shohamy, 2011; Lighthall et al., 2018), we feel safe
to conclude that they reflect the involvement of different neu-
ral systems for immediate and delayed feedback processing.

Consistent with previous ERP studies, we analyzed FRN
amplitudes in the feedback-locked ERP waveforms (FRNpeak)
and in the negative minus positive feedback difference waves
(FRNdiff). Whereas the FRNpeak primarily captures variance
related to the N200 and has been functionally related to the
general violation of action–outcome relationships irrespective
of their valence (Ferdinand et al., 2012), the FRNdiff carries
valence-related variance as reflected by the reward positivity
(Holroyd et al., 2008; Proudfit, 2015). Prior studies investigat-
ing the effects of feedback timing on the FRN have found that
whereas shortly delayed feedback is associated with larger
FRNdiff amplitudes than long delayed feedback (e.g., Höltje
& Mecklinger, 2018; Peterburs et al., 2016; Weismüller &
Bellebaum, 2016), the reverse applies for the FRNpeak

(Höltje & Mecklinger, 2018; Peterburs et al., 2016).
Consistent with these studies, shortly delayed feedback elicit-
ed larger FRNdiff amplitudes than long delayed feedback. This
finding confirms the view that the procedural learning system
was strongly involved in the processing of shortly delayed
feedback. Interestingly, in the present study, FRNpeak ampli-
tudes did not differ between shortly delayed and long delayed
feedback. Different from previous studies that have found
increased FRNpeak amplitudes for long delayed feedback
(Höltje & Mecklinger, 2018; Peterburs et al., 2016), the cue
(the Chinese character) and the choice (the colored button
representing the response key) remained on the screen during
the delay period of the feedback learning task, thereby lower-
ing the working memory demands in the present study as
compared to the aforementioned studies. It is conceivable that
in the Peterburs et al. (2016) and Höltje and Mecklinger
(2018) studies, higher working memory demands in the de-
layed feedback condition were associated with a stronger
working memory-guided build-up of action–outcome expec-
tations, the violation of which resulted in higher FRNpeak

amplitudes.
Comparing FRN measures for subsequently remembered

or forgotten feedback pictures, we found that the FRNpeak was
attenuated for subsequent hit responses relative to subsequent
misses in the long feedback delay condition. This finding
indicates that feedback processing and incidental memory
encoding competed for neural processing resources, which is
in principle consistent with a similar interaction reported by
Wimmer et al. (2014). As the subsequent memory effect
(SME) was only found for long delayed feedback, the process-
ing of which has been shown to engage the hippocampus
(Foerde & Shohamy, 2011; Lighthall et al., 2018), it is tempt-
ing to speculate that the SME reflects a competition for hip-
pocampal processing resources. This conjecture is supported
by the finding that no SME was found in the short delay
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condition. In contrast, Wimmer et al. (2014) found that suc-
cessful memory encoding was associated with diminished re-
ward processing as reflected in striatal RPE signals, which
could reflect a competition between memory encoding and
reward learning for striatal processing resources.
Importantly, Wimmer and colleagues used a reward learning
task with a short reward delay (1.5 seconds) in which presum-
ably reward learning strongly relied on the striatum. Thus, the
interaction between memory encoding and delayed feedback
processing in the present study most likely reflects competi-
tion for different (hippocampal) processing resources than the
one reported by Wimmer et al. (2014).

Because the functional significance of the FRN is still a
matter of debate, the analysis of FRNpeak and FRNdiff ampli-
tudes in the learning phase was complemented by a model-
based single trial EEG analysis in which we explored how the
processing of reward prediction errors (RPEs) and general
expectancy violations irrespective of valence was reflected
in the EEG signal. Using a computational reinforcement learn-
ing model, we computed trial-by-trial estimates of RPEs and
fitted them to the EEG data. Our assumption was that if the
FRN reflects the processing of RPEs, best fits between RPEs
and EEG amplitudes should be obtained in the time windows
in which FRN effects are present in the ERP waveform. This
is exactly what we found: Reliable RPE correlations were
selectively observed in the FRNpeak (140–300-ms) and
FRNdiff (300–450-ms) time windows. This finding confirms
the view that the FRN reflects the processing of RPE signals
on the single trial level. Notably, an exception to this pattern of
results was the cluster of significant RPE correlations in the
550–625-ms time period. Even though this result was not
predicted, it is conceivable that correlations in this late time
interval were related to the P300, which peaked around
500 ms at parietal electrodes in the present study. Further
research is needed to clarify the functional significance of this
finding.

Different from signed RPEs, unsigned prediction errors or
salience prediction errors (SPEs) distinguish between expect-
ed and unexpected outcomes without taking into account the
valence of the prediction error. Based on the assumption that
the FRNpeak is sensitive to this more general type of violation
of action–outcome expectations, we hypothesized that best fits
between model-derived SPEs and single trial EEG amplitudes
should occur in the FRNpeak window. We found significant
SPE correlations between 150 and 275 ms, where FRNpeak

effects occurred, but not in the later time windows in which
correlations with the RPE dominated in the ERP waveforms.
This finding confirms the view that the FRNpeak primarily
reflects variance related to the N200 and by this indicates
the salience (unexpectedness) of an outcome irrespective of
feedback valence.More generally, the results of the single trial
EEG analysis provide further evidence in support of the view
that the FRNpeak and the FRNdiff constitute functionally

distinct ERP components reflecting different aspects of feed-
back processing (i.e., the processing of general expectancy
violations and unexpected rewards, respectively).

We also analyzed two ERP components that have recently
been found to be sensitive to feedback delay manipulations
(i.e., the N170 and the P300). We expected that delayed feed-
back should elicit larger N170 amplitudes than immediate
feedback. Furthermore, if the N170 reflects the involvement
of declarative memory processes it is conceivable that these
processes interact with memory encoding. In the present
study, delayed feedback pictures elicited larger N170 ampli-
tudes, but no effects of successful memory encoding were
obtained. Based on the extant data, it is difficult to make
inferences about which precise declarative memory processes
the N170 delay effect reflects. It is conceivable that the N170
elicited by delayed feedback is linked to an MTL-based pro-
cess that binds together the reaction given by the participants
and the temporally delayed feedback stimulus (Arbel et al.,
2017; Foerde & Shohamy, 2011).

Consistent with the studies by Wang et al. (2014) and
Weismüller and Bellebaum (2016), we found that shortly de-
layed feedback pictures elicited larger P300 amplitudes than
those presented with long feedback delay. Notably, in the two
aforementioned studies the P300 delay effect was significant
at frontal electrodes, whereas we found a significant P300
delay effect at parietal, but not at frontal electrodes. The fron-
tal P300 effects obtained in the studies by Wang et al. (2014)
and Weismüller and Bellebaum (2016) resemble frontal slow
wave activity associated with the maintenance of information
in working memory (Ranganath & Paller, 1999, 2000;
Werkle-Bergner, Mecklinger, Kray, Meyer, & Düzel, 2005).
Consistent with the recent proposal that the feedback-locked
parietal P300 reflects the updating of the value assigned to an
action (Fischer & Ullsperger, 2013; Ullsperger, Fischer,
Nigbur, & Endrass, 2014), the P300 delay effect obtained in
the present study could reflect stronger action value updating
under short feedback delay conditions for the reaction given
by the participant, potentially as a downstream consequence
of the more pronounced feedback evaluation process reflected
in the FRNdiff in this condition.

Even though P300 amplitudes are often predictive of sub-
sequent memory and reflect the encoding of item-specific de-
tails (Fabiani, Karis, & Donchin, 1986; Kamp, Bader, &
Mecklinger, 2017; Karis, Fabiani, & Donchin, 1984), surpris-
ingly no parietal subsequent memory effect (SME) was ob-
tained in the present study. Interestingly however, as evi-
denced by the FRNpeak, an SME was obtained in the delayed
feedback condition. ERPs elicited by delayed feedback pic-
tures showed effects of successful memory encoding, albeit in
an earlier time period than the P300 SME usually found dur-
ing incidental encoding. Thus, it is possible that the presence
of feedback stimuli and the ensuing expectancy violations
speeded up memory formation in particular in the long delay
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condition, hereby provoking interference between feedback
evaluation and memory encoding processes that relied on sim-
ilar neural processing resources.

We also hypothesized that delayed feedback processing
with hippocampal involvement should primarily boost the
recollection of feedback pictures and give rise to a parietal
old–new effects, the putative ERP correlate of recollective
processing. In partial confirmation of this prediction, long
delayed feedback pictures elicited a strong old–new effect
between 500 and 1,100 ms poststimulus. In contrast, feedback
pictures that had been presented with a short feedback delay in
the learning phase were not associated with an old–new effect
in this late time interval. This pattern of results is consistent
with the behavioral finding that feedback pictures presented
with a long delay were associated with better recognition
memory than those presented with a short delay.

Notably, the late old–new effect associated with long de-
layed feedback was more broadly distributed than typically
observed in ERP studies of recognition memory. This finding
is reminiscent of studies that have found more anterior topo-
graphical distributions of N400 effects for pictures as com-
pared with words (Ganis, Kutas, & Sereno, 1996), which
has been taken as evidence for partially different sets of neural
generators for the N400 to verbal and pictorial stimuli (for a
review, see Kutas & Federmeier, 2000). Similarly, the broad
topographical distribution of the late old–new effect observed
in the present study could reflect overlapping, but nonidentical
sets of neural generators underlying the late old–new effect for
pictorial and verbal stimuli. Consistent with this view, in a
recognition memory study in which scene pictures similar to
those in the present study were used, young adults elicited a
broadly distributed old–new effect between 300 and 900 ms
that was largest over central electrode sites (Gutchess, Ieuji, &
Federmeier, 2007).

In the present study, a significant early frontal old–new
effect was obtained in neither condition, indicating that there
was no substantial contribution of familiarity to recognition
memory. This finding contrasts with our previous study in
which superior memory for pictures presented with positive
feedback was associated with an early frontal old–new effect
(Höltje & Mecklinger, 2018), and indicates that positive feed-
back valence and feedback delay benefit memory by distinct
mechanisms: Whereas reward signals elicited by positive
feedback strengthen a context-free and familiarity-based form
of recognition, delayed feedback fosters the recollection of
feedback pictures, presumably mediated by the hippocampal
involvement in feedback processing.
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