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It is a topic of current interest whether learning in humans relies on the

acquisition of abstract rule knowledge (rule-based learning) or whether

it depends on superficial item-specific information (instance-based

learning). Here, we identified brain regions that mediate either of the

two learning mechanisms by combining fMRI with an experimental

protocol shown to be able to dissociate both learning mechanisms.

Subjects had to learn object-position conjunctions in several trials and

blocks. In a learning condition, either objects (Experiment 1) or

positions (Experiment 2) were held constant within-blocks. In contrast

to a control condition in which object–position conjunctions were trial-

unique, a performance increase within and across-blocks was observed

in the learning condition of both experiments. We hypothesized that

within-block learning mainly relies on instance-based processes,

whereas across-block learning might depend on rule-based mecha-

nisms. A within-block parametric fMRI analysis revealed a learning-

related increase of lateral prefrontal and striatal activity and a

learning-related decrease of hippocampal activity in both experiments.

By contrast, across-block learning was associated with an activation

modulation in distinct prefrontal-striatal brain regions, but not in the

hippocampus. These data indicate that hippocampal and prefrontal-

striatal brain regions differentially contribute to instance-based and

rule-based learning.
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Introduction

Learning regularities across multiple episodes is a core

cognitive ability. Controversy currently surrounds whether humans

learn the surface structure of regular input pattern based on the

superficial similarity between learning instances or whether

humans acquire abstract rule knowledge (cf. Pothos, 2005; Shanks

and St. John, 1994; Shanks, 1995). Three main learning tasks have

been used extensively in experimental psychology: artificial

grammar learning, category learning, and sequence learning tasks.

Results of several studies provide evidence for the notion that

learning in these tasks is partly based on the knowledge of

(fragments of) learning instances (Nosofsky, 1986; Perruchet,

1994). In contrast, rule-based accounts assume that subjects

acquire a set of abstract rules, defining an input pattern as

grammatical, as a category member, or as a regular sequence,

respectively (Ashby and Perrin, 1988; Reber, 1989). Alternative

views posit that learning is subserved by both instance-based and

rule-based processes (Dominey et al., 1998; Erickson and

Kruschke, 1998; Knowlton and Squire, 1996; Meulemans and

Van der Linden, 1997; Shanks and St. John, 1994; Shanks, 1995).

Tightly coupled with the debate about instance-based vs. rule-

based learning is the question which brain structures might

subserve either mechanism. However, only a few studies examined

the neural correlates of instance-based vs. rule-based learning. In

an artificial grammar learning study, Fletcher et al. (1999)

demonstrated that learning within experimental blocks is mediated

by the right lateral prefrontal cortex (PFC), whereas the left lateral

PFC subserves learning across the entire experiment. The authors

argue that within-block learning effects mainly rely on explicit

retrieval of individual items based on the surface structure of items,

i.e., instance-based learning. Further, the authors propose that, in

contrast, across-block learning is based on the acquisition of

abstract rule knowledge. In another study (Strange et al., 2001),

subjects were required to learn rules which define the category
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membership of four-letter strings. Changes in abstract rules were

associated with an increase of anterior PFC activity, whereas

hippocampal activation was modulated by the introduction of new

instances. Recent fMRI and patient studies revealed that the

hippocampus is associated with instance-based learning (Lieber-

man et al., 2004; Opitz and Friederici, 2004), whereas the basal

ganglia (Lieberman et al., 2004; Teichmann et al., 2005) and the

lateral PFC (Opitz and Friederici, 2004) subserve rule-based

learning. However, a computational model has implicated the

basal ganglia in instance-based learning and the lateral PFC in rule-

based learning, respectively (Dominey et al., 1998). Apart from the

Dominey et al. (1998) and the Teichmann et al. (2005) study

(which used letter sequences and arithmetic operations, respec-

tively), most of the studies examined artificial grammar learning.

Taken together, these studies converge to suggest that the lateral

PFC subserves rule-based learning, However, the exact location of

lateral PFC activation varies between studies, depending on

stimulus properties and task requirements. Furthermore, most of

the studies point to an involvement of the basal ganglia in rule-

based learning and a specific role of the hippocampus in instance-

based learning.

In the present fMRI study, we investigated this issue by

adopting the experimental logic of the Fletcher et al. (1999) study.

Using a slightly modified version of a recently developed learning

paradigm (Doeller et al., 2005), we aimed at investigating

instance-based vs. rule-based learning in a non-linguistic domain.

In two experiments, subjects were required to memorize six

object–position conjunctions in each trial of several experimental

blocks. Both experiments included two conditions, a learning

condition and a control condition. In the learning condition, either

objects (Experiment 1) or positions (Experiment 2) were held

constant in each trial of the experimental blocks (systematic

repetition of specific objects or positions), by this introducing

regularities across episodes, whereas in the control condition,

object–position conjunctions were trial-unique (no systematic

repetition of specific objects or positions). Hence, we define

learning as the successful adoption of these invariant objects and

positions in object–position conjunctions across trials, i.e., object

or spatial regularities. We expected that the introduction of

invariant objects and positions entails increased task performance

across trials within-blocks of the learning condition. These within-

block learning effects were supposed to reflect mainly instance-

based learning, since subjects’ judgments could rely solely on the

similarity between study and test items. In contrast to our recent

fMRI study (Doeller et al., 2005), trials were blocked by condition

to minimize the probability that subjects based their judgement on

a common strategy for both conditions. Critically, the set of

invariant objects and positions changed from block to block in the

learning condition. By this, subjects were able to transfer their

knowledge about regularities to new instances when a new block

starts. This transfer has been implicated as a possible experimental

test to dissociate instance-based and rule-based learning (e.g.,

Gomez and Schvaneveldt, 1994; Mathews et al., 1989). If subjects

acquire abstract rule knowledge, they should be able to transfer

this knowledge to new instances. Thus, a performance modulation

across learning blocks was assumed to be a main index of rule-

based learning. Based on the above reviewed literature and our

previous results (Doeller et al., 2005), we predicted a learning-

related decrease of hippocampal and an increase of prefrontal-

striatal activation as a function of learning within-blocks. In

contrast, we expected prefrontal-striatal – but not hippocampal –
involvement during across-block learning (cf. Fletcher et al.,

1999; Lieberman et al., 2004; Opitz and Friederici, 2004).
Materials and methods

Subjects

Twenty-four subjects participated in the study, 12 subjects in

Experiment 1 (aged 22–33, mean age 24.6years, 6 females) and 12

subjects in Experiment 2 (aged 22–29, mean age 24.3years, 5

females). All subjects were right-handed with normal or corrected-

to-normal vision and were paid for participating. Informed consent

was obtained before scanning. All participants reported to be in

good health with no history of neurological disease.

Stimuli, task, and design

Sixteen pictures denoting real-life objects were used as stimulus

material in both experiments. The stimulus set contained eight

living and eight non-living objects. Stimuli were presented within a

4 � 4 grid. In each experimental trial (Fig. 1), six different objects

were presented sequentially at six different positions (sample

phase). Each object was presented for 600ms, followed by a

100ms interstimulus interval. After a 2000ms delay (fixation

cross), subjects were shown a probe stimulus for 1000ms.

Participants were required to indicate whether or not the current

object–position conjunction (the probe stimulus) was identical to

one of the six object–position conjunctions presented during the

sample phase. Responses were delivered by a button press with the

right or left index finger (1000ms response window). Response-to-

hand mappings were counterbalanced across subjects. Probes in

each block (see below) comprised 50% old (old object at old

position) and 50% new object–position conjunctions (3 equally

distributed categories: old object/new position, new object/old

position, and new object/new position). Visual feedback was

provided for 500ms immediately after probe offset. An exponen-

tially distributed intertrial interval (ITI) of 2.5–7.5s (mean: 3.5s)

was used (cf. Doeller et al., 2005, for a detailed description of the

experimental procedures).

The design of both experiments included two conditions, a

control condition and a learning condition. To minimize the

probability that subjects based their judgment on a common

strategy for both conditions, trials were blocked by condition. In

contrast to our previous study (Doeller et al., 2005), in which

blocks of both conditions were presented in randomized order,

subjects performed four blocks in sequence in each condition in

the present study. A randomized sequential presentation of blocks

of the learning and the control condition (as in our previous

study) seems to prevent across-block learning. The presentation

of control blocks might hamper the proposed transfer mechanism

from one block to the next block in the learning condition

(Doeller and Opitz, 2004). In both conditions, participants were

informed about the beginning of a new block. Each experimental

block comprised 36 trials. The order of conditions was balanced

across subjects. The 3D structural MR sequence (see below) was

measured in the middle of the experiments to separate the

scanning sessions of both conditions. Participants were unaware

of the experimental manipulation, i.e., the existence of two

different conditions. In the control condition, object–position

conjunctions were unique in each trial. Here, each object–



Fig. 1. Session, block, and trial structure. Subjects performed four blocks in each experimental condition. Each block comprised 36 trials. During the sample

phase of the trial, six different objects were presented sequentially at six different positions within a 4 � 4 grid (grid not shown in the Figure). Upon

presentation of a probe stimulus, participants were required to indicate whether the probe is identical to one of the six object position conjunctions presented

during the sample phase. In the present example, the probe comprised an old object at a new position, therefore requiring a ‘‘new’’ response. Duration (in

seconds) of the respective trial phases are depicted at the bottom of the Figure. ITI, intertrial interval.
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position conjunction in each trial and each block was selected

randomly from the set of objects and positions. In contrast, in the

learning condition either objects (Experiment 1) or positions

(Experiment 2) were held constant within each trial of the

experimental blocks. In the learning condition of Experiment 1,

invariant objects were presented at variable positions (object

regularities). Accordingly, in the learning condition of Experiment

2, variable objects were presented at invariant positions (spatial

regularities). The number of invariant objects and positions,

respectively, resembled the number of object–position conjunc-

tions presented during the sample phase, i.e., the same six objects

or positions were repeated within one block: in each trial, in the

learning condition of Experiment 1, the same six objects were

presented in random sequence at variable positions, in each trial

of one block in the learning condition of Experiment 2, variable

objects were presented at the same six positions (in random

sequence). The fixed configuration of invariant objects and

positions changed from block to block, i.e., when a new block

starts, a new set of objects or positions in object–position

conjunctions was repeated. All other task parameters were held

constant across conditions and experiments. In particular, the

control condition was identical in Experiments 1 and 2. Subjects

were given a training session immediately before the experiment,

including 36 training trials.

Behavioral analysis

For each subject, Pr values (proportion hits�proportion false

alarms; Feenan and Snodgrass, 1990) were used as main

performance measure in both experiments. Instead of the false
alarm rate to all new probes only false alarms to probes comprising

new objects (Experiment 1) and new positions (Experiment 2),

were included. We have previously demonstrated that learning of

such object–position conjunctions is – beside an increase in hit

rate – most clearly revealed by a reduction of false alarms to these

specific probe types, since subjects could reject these probes solely

on the basis of the knowledge of invariant objects and positions,

respectively (Doeller and Opitz, 2004; Doeller et al., 2005). In the

following, this performance measure will be referred to as

Fadjusted Pr_. In the control condition of Experiments 1 and 2,

adjusted Pr values were computed in the same manner as in the

corresponding learning condition. To analyze within-block learn-

ing effects, mean performance measures in nine consecutive trials

(i.e., trials 1–9, 10–18, 19–27, and 28–36) were averaged across

all blocks separately for both conditions. To evaluate across-block

learning effects, mean adjusted Pr values for each entire block of

both conditions were averaged separately for blocks 1–2 and 3–4,

respectively.

Imaging parameters

BOLD-sensitive, T 2*-weighted functional images and T1-weight-

ed structural images (3D MP-RAGE) were acquired at 1.5T

(Siemens Sonata). Functional data were acquired using a gradient-

echo EPI pulse sequence, with the following parameters: TR = 1.8s,

TE = 50ms, flip angle = 85-, slice thickness = 4mm, interslice gap =

1mm, in-plane resolution = 3.5 � 3.5mm, FoV = 224mm2, 20 axial

slices parallel to AC–PC plane. The first four volumes were

discarded to allow for T1 equilibration. In both experiments, the two

conditions were conducted in different functional sessions, separat-
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ed by the structural 3D MP-RAGE sequence. An additional 2D T1-

weighted structural sequence (TR = 600ms, TE = 13ms, flip angle =

80-, slice thickness = 4mm, interslice gap = 1mm, in-plane

resolution = 0.9 � 0.9mm, FoV = 224mm2, 20 axial slices parallel

to AC–PC plane) was measured in-plane with respect to the

functional sequence and applied during the coregistration procedure

(see below).

Imaging preprocessing

The imaging analysis was performed with SPM2 (http://

www.fil.ion.ucl.ac.uk/spm/spm2.html). FMRI time series were

sinc– interpolated in time to correct for differences in slice

acquisition time and motion-corrected, using a 6-parameter rigid

body spatial transformation and a B-spline interpolation. An

additional unwarping procedure was applied to account for

movement-by-magnetization inhomogeneity interactions and by

this to minimize the movement-related residual variance (Ander-

sson et al., 2001). Coregistration included two steps. First, images

of the 2D T1-weighted sequence, which was measured in-plane

with respect to the EPI sequence were coregistered to the mean

functional image. Second, images of the 3D MPRAGE sequence

were coregistered to the images of the resliced 2D T1-weighted

sequence. Subsequently, resliced 3D anatomical images were

normalized to the standard T1 template (MNI reference brain).

Based on the determined parameters, the normalization algorithm

was then applied to the functional volumes. Finally, the normalized

functional images were resampled into 2mm isotropic voxels and

spatially smoothed with an isotropic 7-mm FWHM Gaussian

kernel.

Statistical analysis of fMRI time series

Time series were analyzed using a two-stage analysis. At a first

level, for each trial of both conditions trial-specific effects were

modeled using the canonical HRF (Friston et al., 1998) separately

for the sample phase (epoch-related; duration = 4.1s) and the probe

phase (event-related). Additional parametric analyses were con-

ducted (see below). Data were high-pass filtered to 1/128Hz and

scaled for global activity. Parameters for each covariate were

estimated by a least-mean-squares fit of the model to the time series

using a subject-specific fixed-effects model within the general

linear model. During the estimation procedure, serial correlations

were estimated with a restricted maximum likelihood (ReML)

algorithm using an AR(1) plus white noise model. In SPM2, the

ReML estimates (hyperparameters) are then used to correct for non-

sphericity (Friston et al., 2002). Linear contrasts of the parameter

estimates for each regressor were calculated for each subject and

brought to the second level random effects analysis. All analyses

were restricted to the sample phase. MNI-coordinates of all reported

activations have been transformed to the canonical Talairach space

(http://www.mrc-cbu.cam.ac.uk/imaging/mnispace.html).

To investigate brain regions involved during regularity learning,

we conducted parametric fMRI analyses in the learning condition

of both experiments to explicitly model learning-related activation

patterns (cf. Doeller et al., 2005). For this purpose, individual fMRI

time series (associated with each sample phase) were weighted

with parametric modulation functions, separately modeling (1)

within-block learning (Fig. 5), (2) across-block learning (Fig. 7),

and (3) the across-block modulation of within-block learning

effects (Fig. 8).
Thus, the regressors of these models reflected either learning-

related activation increase or decrease within and across-blocks,

respectively, and the across-block modulation of within-block

learning effects (see below). The first set of model functions

was derived by averaging the individual within-block learning

functions (mean adjusted Pr values for nine consecutive trials,

collapsed across all blocks and subjects), separately for both

experiments. A second set of model functions was used to

analyze across-block learning effects. Here, performance meas-

ures (adjusted Pr values) were collapsed across all trials,

separately for each block and averaged across subjects (sepa-

rately for each experiment). In a third analysis, we used the

slope of the mean fitted learning functions separately for each

entire block as a model function. For this purpose, we (i) fitted

the mean learning functions (adjusted Pr values) for each block

with a logarithmic function y = aln(ti) + b and (ii) calculated

the slope of these functions. Mean learning functions were

derived by averaging individual learning functions for each

block collapsed across all 24 subjects of both experiments. We

used averaged performance functions rather than individual

learning functions as parametric modulation functions in all

three analysis to increase the model fit by means of reducing

error variance.

Areas exhibiting unspecific time effects were excluded from the

analyses. To control for these effects, the respective contrasts were

exclusively masked with regions showing an activation modulation

as a function of time in the control conditions, i.e., activation

increases or decreases within or across-blocks. These mask images

in the control conditions were derived by using identical parametric

modulation functions and statistical thresholds as in the analyses of

the respective learning conditions.

It is important to note that this parametric imaging analysis does

not allow for a direct quantitative comparison of within-block and

across-block learning effects since both underlying parametric

modulation functions have a completely different rate constant.

However, the mass-univariate statistical approach definitely

permits the conclusion that both learning effects rely on

qualitatively different brain networks.

Given our a priori hypotheses, all fMRI analyses were

restricted to the lateral prefrontal cortex, the striatum, and the

hippocampus. In the lateral PFC we focussed on areas which have

been reported in previous imaging studies on incremental learning

(cf. Doeller et al., 2005; Fletcher et al., 2001, 2005; Opitz and

Friederici, 2003; Schendan et al., 2003; Strange et al., 2001;

Turner et al., 2004). Accordingly, prefrontal regions of interest

were defined about peak locations at 30,66,4 (superior frontal

gyrus), 40,11,31/�48,19,30/�40,30,24 (posterior and mid-portion

middle frontal gyrus), �40,8,18/40,28,19 (inferior frontal gyrus,

pars opercularis), �57,20,17/�36,40,4 (inferior frontal gyrus,

pars triangularis), and 36,21,25 (inferior frontal sulcus), together

with the corresponding contralateral coordinates (all coordinates in

Talairach space). Based on our a priori hypothesis and in

agreement with the literature, significant activated regions were

identified using a statistical threshold of P < 0.0005 (uncorrected;

cluster size: 5 contiguous voxels). An additional region-of-interest

(ROI) analysis was performed for the striatum and the hippocam-

pus to further examine our previous results of within-block

learning (P < 0.01, small volume corrected, SVC; Worsley et al.,

1996). Striatal and hippocampal ROIs were determined according

to a detailed neuroanatomy atlas (Warner, 2001). Appropriate

mask image was generated using MRIcro (http://www.psychology.
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Fig. 2. The mask image defining the hippocampal region of interest is superimposed on coronal, sagittal, and axial sections (from left to right) of the MNI T1-

weighted MRI template (see Materials and methods).
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nottingham.ac.uk/sta_/cr1/mricro.html) (see Fig. 2, which shows

hippocampal ROIs).
Fig. 3. Behavioral Results: Within-block Learning. (A) Mean adjusted Pr

values, (B) mean hit rate, (C) mean false alarm rate for probes including

new objects, and (D) mean false alarm rate for probes including new

positions. The performance measures are averaged across trials 1–9, 10–

18, 19–27, and 28–36, respectively, and collapsed across all blocks,

separately for the learning condition (solid) and the control condition

(dashed) in Experiment 1 (object regularities; left panels) and Experiment 2

(spatial regularities; right panels).
Results

Behavioral results: within-block learning

In a first step, within-block learning effects were analyzed

(Fig. 3). In both experiments, performance (adjusted Pr values)

increased across trials in the learning condition, but not in the

control condition. To examine changes of performance during the

time course of the blocks, comparisons between the first (trials

1–9) and last (trials 28–36) quarter of trials within-blocks were

conducted. In Experiment 1 (Fig. 3A, left panel), mean adjusted

Pr values increased from the first to the last quarter of trials

within-blocks in the learning condition, F(1, 11) = 4.86, P <

0.05, but not in the control condition, F(1, 11) < 1. Accordingly,

performance was better in the learning condition as compared to

the control condition in the last quarter of trials, F(1, 11) =

16.12, P < 0.005, but not in the first quarter of trials, F(1, 11) =

2.95, P > 0.1. A marginally significant linear trend across trials

was restricted to the learning condition, F(1, 11) = 4.32, P <

0.07 (control condition: F(1, 11) = 1.50, P > 0.2). In Experiment

2 (Fig. 3A, right panel), an increase of adjusted Pr values

between the first and last quarter of trials was observed in the

learning condition, F(1, 11) = 5.40, P < 0.05, but not in the

control condition: F(1, 11) = 1.29, P > 0.2. In contrast to the first

quarter of trials, F(1, 11) = 1.28, P > 0.2, performance between

conditions differed at a marginally significant level in the last

quarter of trial, F(1, 11) = 4.05, P < 0.07. Moreover, mean

adjusted Pr values increased linearly in the learning condition,

F(1, 11) = 5.70, P < 0.05, but not in the control condition,

F(1, 11) = 1.38, P > 0.2. Thus, these data indicate that an

increase of performance across trials within-blocks was restrict-

ed to the learning condition in both experiments. However,

similar comparisons for the hit rate revealed no differences

between the first and last quarter of trials in both conditions (Fig.

3B), neither in Experiment 1 (learning condition: F(1, 11) = 2.94,

P > 0.1; control condition: F(1, 11) = 1.72, P > 0.2) nor in

Experiment 2 (learning and control condition: F(1, 11) < 1).

For both experiments, additional statistical analyses were

conducted separately for false alarms to probes including new

objects and new positions, respectively. A dissociation between

both experiments was expected with respect to the two types of



Fig. 4. Behavioral Results: Across-block Learning. (A) Mean adjusted Pr

values, (B) mean hit rate, (C) mean false alarm rate for probes including

new objects, and (D) mean false alarm rate for probes including new

positions. The performance measures are averaged across-blocks 1–2 and

3–4, respectively and collapsed across all trials, separately for the learning

condition (solid) and the control condition (dashed) in Experiment 1 (object

regularities; left panels) and Experiment 2 (spatial regularities; right panels).
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false alarms. In Experiment 1 (object regularities), a reduction of

false alarms to probes including new objects was predicted,

whereas in Experiment 2 (spatial regularities), we hypothesized a

selective reduction of false alarms to probes including new

positions, since subjects could reject these specific probes solely

on the basis of their knowledge of invariant objects and positions,

respectively. In Experiment 1, the false alarm rate to probes

including new objects (Fig. 3C, left) was significantly reduced in

the learning condition relative to the control condition, F(1, 11) =

22.71, P < 0.001. Additional comparisons between both conditions

of Experiment 1 revealed no differences with respect to this false

alarm type in the first quarter of trials, F(1, 11) < 1. However, both

conditions differed significantly in the last quarter of trials,

F(1, 11) = 9.12, P < 0.05. By contrast, no differences between

conditions were observed for false alarms to probes including new

positions (Fig. 3D, left), neither for all trials, F(1, 11) = 1.25, P >

0.2, nor for the first, F(1, 11) = 3.53, P > 0.08, and the last quarter

of trials, F(1, 11) < 1. As predicted, analyses of false alarms to

probes including new objects in Experiment 2 (Fig. 3C, right)

revealed no differences between both the two conditions, neither

for all trials, F(1, 11) < 1, nor for the first, F(1, 11) = 1.36, P >

0.2, and the last quarter of trials, F(1, 11) < 1. In contrast, the

false alarm rate to probes including new positions (Fig. 3D, right)

tended to be reduced in the last quarter of trials in the learning as

compared to the control condition, F(1, 11) = 4.49, P < 0.06. No

differences between conditions were observed for the first quarter

of trials, F(1, 11) < 1. Accordingly, false alarms of this type

significantly decreased between the first and last quarter of trials

selectively in the learning condition, F(1, 11) = 5.71, P < 0.05

(control condition: F(1, 11) < 1). Furthermore, a significant linear

trend across trials was restricted to the learning condition, F(1, 11)

= 5.76, P < 0.05 (control condition: F(1, 11) < 1).

Behavioral results: across-block learning

In a second analysis step, across-block learning effects were

examined (Fig. 4). Similar to the within-block analysis, a

performance increase across-blocks was restricted to the learning

condition in both experiments. This observation was confirmed by

a comparison between mean adjusted Pr values for blocks 1–2 vs.

3–4, collapsed across all trials within-blocks. In both experiments,

mean adjusted Pr values increased across-blocks in the learning

condition (Experiment 1: F(1, 11) = 13.90, P < 0.005, Fig. 4A, left

panel; Experiment 2: F(1, 11) = 6.50, P < 0.05, Fig. 4A, right

panel), but not in the control condition (F(1, 11) < 1 in both

experiments). A similar pattern was observed for the hit rate: In

both experiments the mean hit rate was higher in blocks 3–4 as

compared to blocks 1–2 in the learning condition (Experiment 1:

F(1, 11) = 8.10, P < s0.05; Experiment 2: F(1, 11) = 6.20, P <

0.05), but not in the control condition (Experiment 1: F(1, 11) < 1;

Experiment 2: F(1, 11) = 1.59, P > 0.2).

Similar to the within-block learning effects, we conducted

additional analyses of false alarms to probes including new objects

and new positions, respectively. In Experiment 1, the ANOVA

revealed a main effect of condition for probes including new

objects, F(1, 11) = 22.70, P < 0.001 (Fig. 4C, left). Accordingly,

false alarms of this type were reduced in blocks 1–2, F(1, 11) =

10.03, P < 0.01, and blocks 3–4, F(1, 11) = 14.43, P < 0.005, in

the learning relative to the control condition. The false alarm rate to

probes including new positions (Fig. 4D, left) did not differ

between conditions, F(1, 11) = 1.25, P > 0.2, neither in blocks 1–
2, F(1, 11) < 1, nor in blocks 3–4, F(1, 11) < 1. In accordance with

the results of the within-block learning effects, a dissociation

between experiments was observed.

In Experiment 2, the false alarm rate to probes including new

objects (Fig. 4C, right) was similar in the learning and control

condition (F(1, 11) < 1, for the analysis of all blocks and separate

analyses for blocks 1–2 and 3–4, respectively). By contrast,

subjects showed a reduced false alarm rate to probes including

new positions (Fig. 4D, right) in the learning relative to the

control condition (all blocks: F(1, 11) = 7.85, P < 0.05, blocks 1–

2: F(1, 11) = 1.91, P > 0.1; blocks 3–4: F(1, 11) = 5.87, P < 0.05).

To evaluate the across-block modulation of the within-block

learning effects, we calculated performance differences (adjusted

Pr values) between the last quarter of blocks and the first quarter of

blocks, separately for blocks 1–2 and blocks 3–4. These
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difference values were considered as a measure of learning within-

blocks. Difference values entered into an ANOVA with the factors

condition (control vs. learning) and block (difference values for

blocks 1–2 and blocks 3–4, respectively). In this analysis we were

mainly interested in rule-based mechanism which were assumed to

be similar in both the object and the spatial domain. In addition,

given the lower number of datapoints in this analysis compared to

the above analyses, we increased the power of this analysis by

including data from Experiments 1 and 2. This analysis revealed a
Fig. 5. Imaging results: within-block learning. Parametric modulation function

regularities; left panels) and Experiment 2 (spatial regularities; right panels). (A) Pa

72), block 3 (trials 73–108), and block 4 (trials 109–144). (B) Learning-related in

frontal gyrus (MFG), and putamen (PUT). (C) Learning-related decrease of acti

coronal or axial sections of the MNI T1-weighted MRI template. Talairach y coo
marginally significant condition � block interaction, F(1, 23) =

4.19, P < 0.06 (learning condition: 0.14 T 0.05 [block 1–2]; 0.07 T
0.06 [block 3–4]; control condition: �0.03 T 0.05 [block 1–2];

0.13 T 0.06 [block 3–4]). Moreover, difference values were higher

in the learning relative to the control condition in blocks 1–2, F(1,

23) = 4.28, P < 0.05, but not in blocks 3–4, F(1, 23) < 1,

indicating that the performance increase within-blocks in the

learning condition was attenuated across-blocks relative to the

control condition.
s and imaging results are depicted separately for Experiment 1 (object

rametric modulation functions for block 1 (trials 1–36), block 2 (trials 37–

crease of activity within-blocks in the superior frontal gyrus (SFG), middle

vity within-blocks in the hippocampus (HC). SPMs are superimposed on

rdinate or z coordinate is given below each image.



Table 1

Imaging results: within-block learning

Region BA Hemisphere Talairach Z score

x y z

Experiment 1: object regularities

(1) Learning-related increase

Superior frontal gyrus (SFG) 9 L �8 54 32 3.89

Middle frontal gyrus (MFG) 8 L �24 31 33 4.36

Putamen (PUT) – L �24 �1 9 *2.66

(2) Learning-related decrease

Hippocampus (HC) – R 26 �22 �6 *3.87

Experiment 2: spatial regularities

(1) Learning-related increase

Middle frontal gyrus (MFG) 8 R 24 15 32 3.69

Putamen (PUT) – L �26 4 3 *3.23

– R 26 1 11 *2.70

(2) Learning-related decrease

Hippocampus (HC) – R 28 �24 �9 *2.71

Brain regions showing a learning-related activation pattern within-blocks,

separately for Experiments 1 and 2 (from anterior to posterior), described in

terms of Brodmann areas (BA), hemisphere (L, left; R, right), Talairach

coordinates (mm; transformed from the MNI-space), and peak Z score.

SPMs were thresholded at P < 0.0005 (uncorrected), 5 voxel extent, except

for *P < 0.01 (small volume corrected). Contrasts were exclusively masked

with regions showing time effects (activation increase or decrease within-

blocks) in the control condition of both experiments.

Fig. 6. Imaging Results: Within-block Learning. Time courses of the best-

fitting parametric BOLD response (from the within-block analysis, see Fig.

5) for two representative subjects are depicted separately for Experiment 1

(object regularities; left panels; subject #HK) and Experiment 2 (spatial

regularities; right panels; subject #LD) for (A) the middle frontal gyrus

(MFG), (B) the putamen (PUT), and the right hippocampus (HC) in the (C)

learning and the (D) control condition. Responses are plotted separately for

trials 1–9, trials 10–18, trials 19–27, and trials 28–36, relative to grand

mean over voxels, and time-locked to sample phase onset against post-

stimulus time (PST).
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Imaging results: within-block learning

In a first step, within-block learning was evaluated in a

parametric fMRI analysis (Fig. 5; Table 1). For this purpose, fMRI

time series in the learning condition were weighted with mean

within-block learning functions, separately for both experiments.

Contrasts in this and the subsequent across-block fMRI analysis

were exclusively masked with regions showing time effects

(activation increase or decrease within- and across-blocks, respec-

tively) in the control condition of both experiments (see Materials

and methods). In Experiment 1, a learning-related increase of

activity within-blocks was observed in the left superior frontal

gyrus (SFG; Brodmann Area [BA] 9; peak Talairach coordinates x,

y, z: �8, 54, 32) and the left middle frontal gyrus (MFG; BA 8,

�24, 31, 33). Furthermore, the left putamen (�24, �1, 9) showed
a learning-related increase within-blocks. A similar prefrontal-

striatal pattern was observed in Experiment 2. Right MFG (BA 8:

24, 15, 32) and bilateral putamen (left: �26, 4, 3; right: 26, 1, 11)
activity increased as a function of learning within-blocks. By

contrast, the right hippocampus showed a learning-related decrease

of activation within-blocks in both experiments (Experiment 1: 26,

�22, �6; Experiment 2: 28, �24, �9). Examples of prefrontal,

striatal, and hippocampal BOLD responses are provided in Fig. 6.

Imaging results: across-block learning

In a second analysis step, the neural correlates of across-block

learning were investigated (Fig. 7; Table 2). Mean performance

functions of each entire block were used as parametric modulation

functions in the fMRI analysis (see Materials and methods). This

analysis revealed a learning-related increase of activity across-

blocks in the left anterior MFG (BA 46; �22, 43, 2) in Experiment

1 and in the left posterior MFG (BA 8; �30, 9, 35) in Experiment

2. In contrast, the left putamen showed a learning-related decrease
of activity in Experiment 1 (�18, 13, �9) and Experiment 2 (�20,
12, �1). No learning-related activation pattern across-blocks could

be observed in the hippocampus (at a lowered threshold of P <

0.01, SVC), neither in Experiment 1 nor in Experiment 2.

Examples of prefrontal and striatal BOLD responses are reported

in Fig. 9.

Finally, modulations of the within-block learning effects across-

blocks were analyzed in a separate model, using the slope of the



Fig. 7. Imaging results: across-block learning. Parametric modulation functions and imaging results are depicted separately for Experiment 1 (object

regularities; left panels) and Experiment 2 (spatial regularities; right panels). (A) Parametric modulation functions separately for blocks 1–4. (B) Learning-

related increase of activity across-blocks in the middle frontal gyrus (MFG). (C) Learning-related decrease of activity across-blocks in the putamen (PUT). See

Fig. 5 for details.

C.F. Doeller et al. / NeuroImage 31 (2006) 1802–18161810
mean fitted learning function separately for each of the four blocks

as model function (collapsed across both experiments; see

Materials and methods; Figs. 8 and 9; Table 2). The mean slope

decreased across-blocks and we suppose that this gradual decrease

of the slope reflects the across-block modulation of the within-

block learning effect. This analysis revealed activations in the left

SFG (BA 10; �28, 53, 14), the bilateral putamen (left: �22, 11,
�4; right: 24, 13, �6), and the left caudate nucleus (�14, 8, 5).
Discussion

The present study aimed at specifying the neural correlates of

instance-based and rule-based learning. The first learning-process
should be mainly reflected in a performance increase within

experimental blocks (within-block learning), whereas the latter

learning process should predominantly entail a performance

increase across learning blocks (across-block learning). In Exper-

iment 1 and Experiment 2, subjects had to learn object regularities

and spatial regularities, respectively. Our behavioral analyses

revealed within-block and across-block learning effects in both

experiments. In both experiments, within-block learning was

associated with a decrease of hippocampal and an increase of

middle/superior frontal gyrus and putamen activity, whereas

across-block learning was reflected in an increase of middle frontal

gyrus and an attenuation of putamen activation. Based on these

results, we argue that the introduction of object and spatial

regularities entails reduced relational binding requirements, since



Table 2

Imaging results: across-block learning

Region BA Hemisphere Talairach Z score

x y z

Experiment 1: object regularities

(1) Learning-related increase

Middle frontal gyrus (MFG) 46 L �22 43 2 4.46

(2) Learning-related decrease

Putamen (PUT) – L �18 13 �9 3.60

Experiment 2: spatial regularities

(1) Learning-related increase

Middle frontal gyrus (MFG) 8 L �30 9 35 4.94

(2) Learning-related decrease

Putamen (PUT) – L �20 12 �1 3.53

Across-block modulation of within-block learning effects

Superior frontal gyrus (SFG) 10 L �28 53 14 3.72

Putamen (PUT) – R 24 13 �6 4.87

– L �22 11 �4 3.81

– L �16 9 �11 3.89

Caudate nucleus (CN) – L �14 8 5 4.38

Brain regions showing a learning-related activation pattern across-blocks

and an across-block modulation of within-block learning effects (for further

details see Table 1 legend). SPMs were thresholded at P < 0.0005

(uncorrected), 5 voxel extent. Contrasts were exclusively masked with

regions showing time effects in the control condition of both experiments.

Fig. 8. Imaging Results: Across-block Modulation of Within-block

Learning effects. (A) Model functions separately for blocks 1–4. (B)

Slope-related activity in the SFG, the putamen, and the caudate nucleus

(CN). See Materials and methods and Fig. 5 for details.
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invariant objects are bound to variable positions or vice versa.

Furthermore, we propose that prefrontal-striatal brain regions

mainly contribute to rule-based learning, whereas the hippocampus

solely subserves instance-based learning.

In both experiments, performance (Pr values) increased within

and across-blocks. Contrary, in the control condition performance

remained constant within and across-blocks. Furthermore, the

analysis of false alarms revealed a dissociation between both

experiments. During learning object regularities (Experiment 1),

solely false alarms to probes including new objects decreased

within and across-blocks, whereas in Experiment 2 (spatial

regularities), this selective decrease of false alarms was restricted

to probes including new positions. Here, subjects benefit most of

all from regularity learning since they can reject the probes solely

on the basis of the knowledge of invariant objects and positions,

respectively. A possible explanation for this differential domain-

specific reduction of false alarms might be an enhanced selectivity

of object and spatial representations maintained in memory,

respectively (cf. Yeshurun and Carrasco, 1998). However, these

learning effects were more pronounced in Experiment 1 as

compared to Experiment 2. This might be due to the high

distinctiveness of the objects used in this study which possibly

enhances processing of objects relative to positions. By this the

extraction (i.e., the detection and representation of the set of

invariant [across multiple occurrences] episodic features [objects/

positions] in the learning condition) of invariant objects is

facilitated relative to the extraction of invariant positions, which

might entail more robust learning effects in the object than in the

spatial domain (cf. Doeller and Opitz, 2004).

However, in contrast to our previous study (Doeller et al.,

2005), we could not find a significant increase of hit rates in

both learning conditions within-blocks. Thus, in contrast to

reduced relational binding, an alternative explanation for the

increased performance in the present experiment might be
enhanced item memory (memory for single objects in Experi-

ment 1 and memory for single positions in Experiment 2 rather

than memory for object–position conjunctions). If subjects

would solely rely on the knowledge of the invariant stimulus

feature irrespective of the second, variable stimulus feature, an

item memory explanation would predict an increase of false

alarms for probes comprising an old object at a new position

(Experiment 1) and for probes comprising a new object at an

old position (Experiment 2). However, a post hoc analysis

revealed no differences of the false alarm rate for these specific

probe types between the first and the last quarter of blocks in

both experiments (Experiment 1: F(1, 11) < 1; Experiment 2:

F(1, 11) = 2.05, P > 0.10). These data support our view that

improved performance is mainly due to reduced binding

requirements rather than an increase of pure item memory.

Hippocampal contribution to instance-based learning

The learning–related decrease of hippocampal activity within-

blocks in Experiments 1 and 2 is consistent with our previous study

(Doeller et al., 2005) as well as with studies showing hippocampal

decrease during other types of gradual/incremental learning, e.g.,

sequence learning (Schendan et al., 2003), probabilistic classifica-

tion learning (Poldrack et al., 2001; Seger and Cincotta, 2005), and

artificial grammar learning (Opitz and Friederici, 2003, 2004;

Strange et al., 2001). In accordance with models of hippocampal



Fig. 9. Imaging Results: Within-block Learning. (A)– (B): Time courses of

the best-fitting parametric BOLD response from the across-block analysis

(Fig. 7) for two representative subjects are depicted separately for

Experiment 1 (object regularities; left panels; subject #HK) and Experiment

2 (spatial regularities; right panels; subject #LD) for (A) the middle frontal

gyrus (MFG), and (B) the putamen (PUT). In (C) responses from the slope-

related analysis (Fig. 8) are depicted separately for the superior frontal

gyrus (SFG; left) and the putamen (PUT; right). Responses are plotted

separately for blocks 1–4, relative to grand mean over voxels, and

timelocked to sample phase onset against post-stimulus time (PST).
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function (Eichenbaum, 2000; Norman and O’Reilly, 2003) we

argue that the activation decrease is due to the gradual reduction of

relational binding requirements during learning, since invariant

objects have to be bound to variable positions (Experiment 1) or

variable objects have to be bound to invariant positions (Exper-

iment 2), respectively. By contrast, in the control condition,

variable objects have to be bound to variable positions in each

trial leading to constant, high binding requirements.

As a consequence, hippocampal involvement diminishes as a

function of learning. The behavioral data support this binding

hypothesis rather than a pure item memory explanation. Moreover,
our view is in agreement with studies on the medial temporal lobe

which indicate that the rhinal cortex – and not the hippocampus –

is involved in item memory (Brown and Aggleton, 2001; Davachi

and Wagner, 2002).

In fact the hippocampus supports associative or relational

memory (Cohen et al., 1999), i.e., binding of different features into

a coherent representation of an episode. Binding is a general

mechanism, which seems to be important in different cognitive

domains (Treisman, 1999; Zimmer et al., in press), with the

hippocampus playing a critical role during binding in episodic

memory (Cohen et al., 1999; Ryan et al., 2000) and language

processing (Meyer et al., 2005; Opitz and Friederici, 2004).

Furthermore, it is conceivable that hippocampal involvement in

working memory, especially for novel, complex information

(Ranganath and D’Esposito, 2001; Ranganath et al., 2005) is due

to binding of to be remembered features in working-memory which

supports successful long-term memory formation (cf. Ranganath

and Blumenfeld, 2005). Thus, the learning-related hippocampal

activation pattern in our working-memory task might reflect the

reduced working memory binding operations, possibly in the

service of long-term memory formation.

Interestingly, in the two aforementioned studies (Opitz and

Friederici, 2004; Strange et al., 2001) the introduction of new

exemplars (Strange et al., 2001) and changes of superficial features

of sentences (Opitz and Friederici, 2004) entailed a phasic increase

of hippocampal activation which rapidly attenuated as a function of

learning (cf. Strange et al., 1999). In contrast, in both studies

hippocampal activation was not affected by the introduction of new

grammatical rules. In line with these findings, hippocampal activity

decreased as a function of learning within-blocks but not across-

blocks in the present study. At the beginning of each new block,

the set of invariant objects and positions was changed. Conse-

quently, these changes of superficial features, i.e., instances gave

rise to hippocampal involvement at the beginning of the blocks

with its activity gradually decreasing as a function of increasing

performance within-blocks. Critically, the across-block perfor-

mance increase, which is supposed to be mainly based on strategic

rule-based mechanisms, especially the transfer of knowledge about

the existence of regularities to new instances in a new block, did

not give rise to a modulation of hippocampal activation across-

blocks. Based on these data and in line with previous imaging

studies (Lieberman et al., 2004; Opitz and Friederici, 2004; Strange

et al., 2001) we propose that the hippocampus contributes to

learning mainly by means of instance-based processes.

However, one objection against our interpretation of the

learning-related activation decrease in the hippocampus could be

that the hippocampal pattern might be related to increased

predictability of events in the learning relative to the control

condition. For instance, using a choice reaction time task where

subjects were required to respond to target stimuli consisting of

color-shape conjunctions, Strange et al. (2005) demonstrated that

hippocampal activation was modulated by the entropy of a

stimulus sequence, i.e., the predictability of events. This is a novel

and interesting finding, since predictability-related brain signals (in

conditioning or causal associative learning experiments) have been

consistently observed in the striatum (e.g., McClure et al., 2003;

O’Doherty et al., 2003) and to a lesser extent in the prefrontal

cortex (Fletcher et al., 2001; Turner et al., 2004). However, in

contrast to the Strange et al. (2005) study, where the authors used

four different event types (four possible conjunctions of two colors

and two shapes), our object–position conjunctions in each trial
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were selected from a much larger set of 16 possible objects/16

possible positions (control condition), 6 objects/16 positions

(learning condition Experiment 1), and 16 objects/6 positions

(learning condition Experiment 2), respectively. Given this huge

number of possible object–position conjunctions in both the

control condition (n = 256) and the learning condition (n = 96) the

probability of occurrence of a specific object–position conjunction

in one block is very small. On average, even in the learning

condition a singular object–position conjunction is presented only

2.25times in one block (0.85times in the control condition). This

makes it rather unlikely that differences in the predictability of

events account for the hippocampal activation pattern within-

blocks. However, further studies are required to disentangle the

specific role of the hippocampus in memory binding and encoding

the predictability of events.

Prefrontal–striatal contributions to rule-based learning

Distinct lateral prefrontal brain regions exhibited a learning-

related modulation of activity within and across-blocks in both

experiments. In showing a prefrontal activation increase as a

function of learning within-blocks in both experiments, we could

replicate our previous findings (Doeller et al., 2005). However, it

should be noted that the prefrontal activation pattern in our

previous work was slightly more lateral than the present PFC

activations. This might be due to task differences. In the present

study, both conditions were presented in separate sessions. By

contrast, in our previous study, blocks of both conditions were

presented in randomized order. Furthermore, in contrast to our

previous study, in the present experiment subjects were not

informed about the presence of task relevant regularities. Thus,

these task changes might have entailed marginally different within-

block PFC activations.

We argue that the lateral PFC is involved in (i) the extraction of

task-relevant regularities and (ii) the adjustment of ongoing

processing of stimuli on the basis of these extracted regularities,

which might be represented in the PFC by means of mnemonic

codes (Becker and Lim, 2003). It is supposed that these mnemonic

codes facilitate encoding of new object-position conjunctions and

give rise to increased performance during the time course of

learning by providing a more efficient encoding strategy. The

present results indicate that separable lateral prefrontal regions

exhibited a learning-related activation pattern within- and across-

blocks. In our previous work we pointed out that the extraction

mechanism is most dominant during an early stage of the learning

process, whereas the adjustment mechanism gradually evolves

during learning, since the development of mnemonic codes relies

on the extracted regularities. In the present study, it is conceivable

that the former mechanism is most prevalent within learning

blocks, especially within the early learning blocks, whereas the

latter mechanism gains more influence during later blocks, i.e.,

evolves across learning blocks.

Furthermore, we argue that this within-block extraction process

is supported by integrative working memory operations, which

might be important for the integration of the invariant object and

spatial features, respectively. This is in accordance with two fMRI

studies showing higher lateral PFC activity associated with the

integration of items into higher-level chunks (Bor et al., 2003) and

the integration of verbal and spatial information (relative to the

separate representation of both types of information; Prabhakaran

et al., 2000).
An alternative interpretation for the observed prefrontal results

within-blocks remains possible. Relying solely on the knowledge

about the set of invariant objects or positions while performing the

memory task might lead to a false response in about 17% of the

possible probes, namely those composed of old objects at new

positions (Experiment 1) and of new objects at old positions

(Experiment 2), respectively. In the case of these specific probe

types, the lateral PFC might be involved in interference suppres-

sion and resolution (cf. Bunge et al., 2001; Miller et al., 1996;

Sakai et al., 2002).

The lateral PFC has been implicated in various kinds of gradual

learning (Fletcher et al., 2001; Opitz and Friederici, 2003;

Schendan et al., 2003; Strange et al., 2001; Turner et al., 2004).

Furthermore, the lateral PFC is involved in the acquisition and the

implementation of task-relevant rules (Freedman et al., 2001;

Rougier et al., 2005; Wallis et al., 2001). It is conceivable that the

proposed mnemonic codes (Becker and Lim, 2003) provide rule-

like aggregated representations of extracted regularities of invariant

stimulus features, most pronounced during later stages of learning.

The across-block modulation of middle frontal gyrus activity might

indicate that such rule-like representations are flexibly adapted to

new task requirements, such as a new set of invariant stimulus

features at the beginning of a new block (cf. Duncan, 2001), and

hence producing ‘‘higher levels of generalization’’ (Rougier et al.,

2005, p. 7343) as learning proceeds. Alternatively, across-block

learning (and the prefrontal activation increase across-blocks)

might reflect an incremental process of organization of the input

pattern (Jamieson and Mewhort, 2005). Fletcher et al. (1999)

observed a virtually identical increase of left middle frontal gyrus

activity across-blocks during artificial grammar learning. The

authors argue that this incremental activation pattern reflects the

‘‘implementation of semantic knowledge’’ (Fletcher et al., 1999, p.

176) of abstract grammar rules. In accordance with this view, we

argue that rule-like representations of task-relevant regularities in

object–position conjunctions gradually evolve across-blocks, since

information is aggregated across multiple episodes (cf. Rougier et

al., 2005). This left-lateralized PFC activation increase across-

blocks is also in line with the view that the left PFC is involved in

semantic encoding operations (Gazzaniga, 2000; Habib et al.,

2003). Furthermore, the inferior–superior gradient of MFG

activation for learning invariant stimulus features in the object

(inferior portion of the MFG) and spatial domain (superior portion

of the MFG) is in accordance with previous memory models of the

PFC (Goldman-Rakic, 1996).

Similar to our previous study, the putamen exhibited a learning-

related activation increase within-blocks. In addition, we observed

a learning-related activation decrease across-blocks in this brain

region. Furthermore, putamen and caudate nucleus activity

correlated with the across-block attenuation of the slope of the

within-block learning functions. Within learning blocks, we

observed a complementary activation pattern in the hippocampus

and the striatum. This differential involvement of the hippocampus

and the striatum is in accordance with the view that the

hippocampus and the basal ganglia comprise different memory

systems. In contrast to the hippocampus which supports declarative

memory, the striatum has been associated with nondeclarative

learning and memory operations, namely incremental or habit

learning (Knowlton et al., 1996; Packard and Knowlton, 2002;

Poldrack et al., 2001; Squire and Zola, 1996).

In addition, the striatum has been implicated in stimulus–

reward and stimulus–stimulus learning by representing predictions
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of future reward delivery (O’Doherty et al., 2003; Schultz, 2002).

Based on this evidence and assumptions of formal learning theories

(cf. Sutton and Barto, 1990), the learning-related increase of striatal

activity within-blocks might indicate that the striatum codes the

increased predictability of invariant stimulus features and by this

implements a statistical model of the task environment (Dayan et

al., 2000). The across-block attenuation of these striatal processes

might reflect the facilitated update of this statistical model.

Our behavioral analyses point to an interaction of within- and

across-block learning. However, this might be partially due to an

increase of general skills in the control condition. On a neural level,

this interaction was reflected in an attenuation of superior frontal

gyrus and putamen/caudate activity (slope-related analysis). Taken

together, these data indicate that both learning processes are – at

least to a certain extent – interdependent, i.e., within-block learning

effects are attenuated across-blocks. The maximum of performance

within-blocks seems to be reached earlier in the last as compared to

the first blocks, i.e., within-block learning gets faster in the final

phase of the experiment (cf. Fletcher et al., 1999, 2001), where

predictability of regularities increases and by this uncertainty

diminishes faster (cf. Rescorla and Wagner, 1972; Sutton and Barto,

1990).

Finally, it could be speculated that there is a cooperative

functional interaction between lateral prefrontal and striatal

structures during learning within and across-blocks in the present

task, possibly with different time courses in either structure (cf.

Pasupathy and Miller, 2005). Recent computational models

(Atallah et al., 2004; Braver and Cohen, 2000; Frank et al.,

2001) support this view by showing a crucial role of the striatum

in providing a gating mechanism which controls the flexible

update of prefrontal representations by means of a reinforcement

signal. Thus, striatal reinforcement signals, coding the predictive

relationships among invariant stimulus features might be involved

in updating information about regularities maintained in the PFC,

hence stabilizing prefrontal rule-like representations (cf. Rougier

et al., 2005).

In summary, the present results suggest that instance-based and

rule-based learning presumably depend on different brain regions.

The hippocampus seems to be solely involved during instance-

based learning, whereas distinct lateral prefrontal and striatal

structures mainly subserve rule-based learning.
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Poldrack, R.A., Clark, J., Paré-Blagoev, E.J., Shohamy, D., Creso Moyano,

J., Myers, C., Gluck, M.A., 2001. Interactive memory systems in the

human brain. Nature 414, 546–550.

Pothos, E.M., 2005. The rules versus similarity distinction. Behav. Brain

Sci. 28, 1–14.

Prabhakaran, V., Narayanan, K., Gabrieli, J.D.E., 2000. Integration of
diverse information in working memory within the frontal lobe. Nat.

Neurosci. 3, 85–90.

Ranganath, C., Blumenfeld, R.S., 2005. Doubts about double dissocia-

tions between short- and long-term memory. Trends Cogn. Sci. 9,

374–380.

Ranganath, C., D’Esposito, M., 2001. Medial temporal lobe activity

associated with active maintenance of novel information. Neuron 31,

865–873.

Ranganath, C., Cohen, M.X., Brozinsky, C.J., 2005. Working memory

maintenance contributes to long-term memory formation: neural and

behavioral evidence. J. Cogn. Neurosci. 17, 994–1010.

Reber, A.S., 1989. Implicit learning and tacit knowledge. J. Exp. Psychol.

Gen. 118, 219–235.

Rescorla, R.A., Wagner, A.R., 1972. A theory of Pavlovian conditioning:

variations in the effectiveness of reinforcement and non-reinforcement.

In: Black, A.H., Prokasy, W.F. (Eds.), Classical Conditioning II.

Current Research and Theory. Appleton-Century-Crofts, New York,

pp. 64–99.

Rougier, N.P., Noelle, D.C., Braver, T.S., Cohen, J.D., O’Reilly, R.C., 2005.

Prefrontal cortex and flexible cognitive control: rules without symbols.

Proc. Natl. Acad. Sci. U. S. A. 102, 7338–7343.

Ryan, J.D., Althoff, R.R., Whitlow, S., Cohen, N.J., 2000. Amnesia is a

deficit in relational memory. Psychol. Sci. 11, 454–461.

Sakai, K., Rowe, J.B., Passingham, R.E., 2002. Active maintenance in

prefrontal area 46 creates distractor-resistant memory. Nat. Neurosci. 5,

479–484.

Schendan, H.E., Searl, M.M., Melrose, R.J., Stern, C.E., 2003. An fMRI

study of the medial temporal lobe in implicit and explicit sequence

learning. Neuron 37, 1013–1025.

Schultz, W., 2002. Getting formal with dopamine and reward. Neuron 36,

241–263.

Seger, C.A., Cincotta, C.M., 2005. The roles of the caudate nucleus in

human classification learning. J. Neurosci. 25, 2941–2951.

Shanks, D.R., 1995. The Psychology of Associative Learning. Cambridge

University Press, Cambridge.

Shanks, D.R., St. John, M.F., 1994. Characteristics of dissociable human

learning systems. Behav. Brain Sci. 17, 367–447.

Squire, L.R., Zola, S.M., 1996. Structure and function of declarative and

nondeclarative memory systems. Proc. Natl. Acad. Sci. U. S. A. 93,

13515–13522.

Strange, B.A., Fletcher, P.C., Henson, R.N.A., Friston, K.J., Dolan, R.J.,

1999. Segregating the functions of human hippocampus. Proc. Natl.

Acad. Sci. U. S. A. 96, 4034–4039.

Strange, B.A., Henson, R.N.A., Friston, K.J., Dolan, R.J., 2001. Anterior

prefrontal cortex mediates rule learning in humans. Cereb. Cortex 11,

1040–1046.

Strange, B.A., Duggins, A., Penny, W., Dolan, R.J., Friston, K.J., 2005.

Information theory, novelty and hippocampal responses: unpredicted or

unpredictable? Neural Netw. 18, 225–230.

Sutton, R.S., Barto, A.G., 1990. Time-derivative models of Pavlovian

reinforcement. In: Gabriel, M., Moore, J. (Eds.), Learning and

Computational Neuroscience: Foundations of Adaptive Networks.

MIT Press, Cambridge, MA, pp. 497–537.

Teichmann, M., Dupoux, E., Koider, S., Brugières, P., Boissé, M.-F.,
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